C. telophase and cytokinesis
Explanation:
I'm not sure how I explain this tho
Answer:
Vacuum
Explanation:
A vacuum is usually defined as a space in which there is an absence of matter. It can also be said that there is an extremely low amount of pressure due to which the particles present in it are not affected by any type of process that occurs in space. The value of pressure is lower than the value of normal atmospheric pressure.
For example, sound cannot travel in space because there is no medium such as water and air through which the sound waves can propagate.
<span>http://www.geosociety.org/science/timescale/timescl.htm
The geologic time scale is organized based by major geological events.
</span>
Answer:
F1 Females - all wild type
F1 Males - all wild type
F2 Females - - all wild type
F2 Males - 1/2 wild type, 1/2 vermilion
Explanation:
The wild-type allele (Xᵛ⁺) is dominant over vermilion (Xᵛ), which is a sex-linked trait.
Female flies have two X chromosomes, male flies have one X and one Y chromosome.
A homozygous wild-type female fly (Xᵛ⁺Xᵛ⁺) is mated with a vermilion male fly (XᵛY).
The female parent can only produce Xᵛ⁺ gametes.
The male parent can produce either Xᵛ or Y gametes.
When gametes from both parents fuse, the F1 offspring will have the genotypes Xᵛ⁺Xᵛ (females with wild type eyes) and Xᵛ⁺Y (males with wild type eyes).
The F1 females can produce Xᵛ⁺ and Xᵛ gametes. The F1 males can produce Xᵛ⁺ and Y gametes.
When the F1 individuals interbreed, the gametes combine to give rise to the F2 offspring. The possible combination of gametes that will give the different genotypes and phenotypes in the F2 are:
- Xᵛ⁺Xᵛ⁺ females with wild type eyes
- Xᵛ⁺ Y males with wild type eyes
- Xᵛ Xᵛ⁺ females with wild type eyes
- Xᵛ Y males with vermilion eyes
Answer:
1.
mRNA - Messenger RNA: Encodes amino acid sequence of a polypeptide.
tRNA - Transfer RNA: Brings amino acids to ribosomes during translation.
rRNA - Ribosomal RNA: With ribosomal proteins, makes up the ribosomes, the organelles that translate the mRNA.
2.
Transcription is the process by which DNA is copied (transcribed) to mRNA, which carries the information needed for protein synthesis. Transcription takes place in two broad steps. First, pre-messenger RNA is formed, with the involvement of RNA polymerase enzymes.
3.
During translation, which is the second major step in gene expression, the mRNA is "read" according to the genetic code, which relates the DNA sequence to the amino acid sequence in proteins. Each group of three bases in mRNA constitutes a codon, and each codon specifies a particular amino acid (hence, it is a triplet code). The mRNA sequence is thus used as a template to assemble—in order—the chain of amino acids that form a protein.
Explanation: