Answer:
Part A
The intensity is
Part B
The intensity is 
Explanation:
From the question we are told that
The intensity of the light detected by first eye is 
Now at initial state according the question the light ray is perpendicular to the eye so it means that it is at 90° the eye
Now the first question is to obtain the intensity the first eye (the first in this case is the one focused on the light )would detect when the head is rotated by 20° its previous orientation
This is mathematically evaluated as

Now the second question is to obtain the intensity the first eye (the first eye in this case is the one that is not focused on the light )would detect when the head is rotated by 20° its previous orientation
Now in this case the angle between the eye and the light is 90-20 = 70°
So


<span>D. price ceiling
</span><span>This is a government regulation that establishes a maximum price for a particular good.</span><span>
</span>
Given data
*The given mass of the pendulum is m = 3 kg
*The given height is h = 0.3 m
The formula for the maximum speed of the pendulum is given as
![v_{\max }=\sqrt[]{2gh}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B2gh%7D)
*Here g is the acceleration due to the gravity
Substitute the values in the above expression as
![\begin{gathered} v_{\max }=\sqrt[]{2\times9.8\times0.3} \\ =2.42\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B2%5Ctimes9.8%5Ctimes0.3%7D%20%5C%5C%20%3D2.42%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Hence, the maximum speed of the pendulum is 2.42 m/s
Do you have a picture then I could determine 1 millimeter
Answer:
c) 100,000 m/s
Explanation:
You need to take the same wave length from the top graph and bottom one, so let's take half a wave length then in the top one that is 0.005, but in the bottom one it's 2000/4 = 500 because they are smaller and there are 4 half waves before you get to 2000, whereas in the top one there is 1 half wave before you get to 0.005 on the graph.
Now use speed = distance / time
speed = 500 / 0.005 = 100 000 m/s