Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;

Therefore, the average velocity is 180 km/hr
The official web site of the Nobel Prize explains that Marie Curie’s chemistry prize was partly for her discovery that the radioactivity of a substance is unaffected when it undergoes a chemical reaction. The discovery implied was that, Radioactivity involves Radioactivity involves only neutrons.
Explanation:
- The official web site of the Nobel Prize explains that Marie Curie’s chemistry prize was partly for her discovery that the radioactivity of a substance is unaffected when it undergoes a chemical reaction. The discovery implied was that, Radioactivity involves only neutrons.
- Marie Curie studied about the radiation of all compounds containing the known radioactive elements, including uranium and thorium, which she later discovered that they were radioactive.
- she discovered the following results,
- the exact measurement of the strength of the radiation from uranium;
- the intensity of the radiation was found to be proportional to the amount of uranium or thorium in the compound .
- the ability to emit radiation is not dependent on the arrangement of the atoms in a molecule;
- it must be linked to the interior of the atom itself which is a revolutionary discovery.
Answer:
Alloy, metallic substance composed of two or more elements, as either a compound or a solution. The components of alloys are ordinarily themselves metals, though carbon, a nonmetal, is an essential constituent of steel.
Explanation:
Alloys are usually produced by melting the mixture of ingredients. The value of alloys was discovered in very ancient times; brass (copper and zinc) and bronze (copper and tin) were especially important. Today, the most important are the alloy steels, broadly defined as steels containing significant amounts of elements other than iron and carbon. The principal alloying elements for steel are chromium, nickel, manganese, molybdenum, silicon, tungsten, vanadium, and boron have a wide range of special properties, such as hardness, toughness, corrosion resistance, magnetizability, and ductility. Nonferrous alloys, mainly copper–nickel, bronze, and aluminum alloys, are much used in coinage. The distinction between an alloying metal and an impurity is sometimes subtle; in aluminum, for example, silicon may be considered an impurity or a valuable component, depending on the application, because silicon adds strength though it reduces corrosion resistance.
<span>When two or more identical capacitors (or resistors) are connected
in series across a potential difference, the potential difference divides
equally among them.
For example, if you have nine identical capacitors (or resistors) all
connected end-to-end like elephants in a circus parade, and you
connect the string to a source of 117 volts (either AC or DC), then
you will measure
(117v / 9) = 13 volts
across each unit in the string.</span>