Answer:
Explanation:
The acidity of a solution is measured by its pH, which is the logarithm of the inverse of the molar concentration of hydronium (H₃O⁺) ions:
- pH = log 1 / [H₃O⁺] = - log [H₃O⁺]
When you know the pH value you can find hydronium concentration using the antilogaritm function:
![pH=-log[H_3O^{+}]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-2.50}\\ \\ {[H_3O^+]}=0.0032](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%7B%2B%7D%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-2.50%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D0.0032)
The unit of molar concentration is M.
To prove your answer you can take the logarithm of 0.0316:
Answer:
1.14 atm and 1.139 mol
Explanation:
The <em>total pressure</em> of the container is equal to the <u>sum of the partial pressure of the three gasses</u>:
- P = Poxygen + Pnitrogen + Pcarbon dioxide
- 2.50 atm = 0.52 + 0.84 + Pcarbon dioxide
Now we <u>solve for the pressure of carbon dioxide</u>:
- Pcarbon dioxide = 1.14 atm
To c<u>alculate the number of CO₂ moles </u>we use <em>PV=nRT</em>:
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 32 °C ⇒ 32 + 273.16 = 305.16 K
1.14 atm * 25.0 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 305.16 K
Interactions to an organism can be both harmful and beneficial due to the organism's circumstances. For example by adding tadpoles to an eco system it results in the tadpoles eating all the food thus killing the other organisms. Whereas by adding plants to an ecosystem it provides shelter for the organisms and possibly food being beneficial.
Location the element zinc (Zn) on the periodic table:
Group number : 12
Period number : 4
Block : d block
Element : Transition elements.
Part 2:
Protons in an atom of Zn: 30
Part 3:
Electrons in a Zn atom: 30
Part 4 :
Neutron in an atom of Zn: 35