Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.
i think its MIDDLE FINGERS UP IN THE SKY AND AT THESE AHOLE MODERATORS
Answer:
They are both listed under group 11 on the periodic table and both are highly conductive of electricity
Explanation:
HOPE THIS HELPS ^^
Answer:

Explanation:
If we want to convert from grams to moles, the molar mass is used. This is the mass of 1 mole. They are found on the Periodic Table as the atomic masses, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
Look up the molar mass of carbon.
Set up a ratio using the molar mass.

Since we are converting 3.06 grams to moles, we multiply by that value.

Flip the ratio. This way, the ratio is still equivalent, but the units of grams of carbon cancel.

The original measurement of grams (3.06) has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
The 7 in the ten-thousandth place tells us to round the 4 up to a 5.

3.06 grams of carbon is approximately <u>0.255 moles of carbon.</u>
"As we move through the visible spectrum of violet, blue, green, yellow, orange and red, the wavelengths become longer. The range of wavelengths (400 - 700 nm) of visible light is centrally located in the electromagnetic spectrum (Fig. 1)."
-https://www.asu.edu/courses/phs208/patternsbb/PiN/rdg/color/color.shtml