If a muriatic acid solution has a pH of 2.50, what is the hydronium ion concentration (hydronium ion concentration is also the m
uriatic acid concentration)?
With a pH of 2.50, the hydronium ion concentration is _____________________
1 answer:
Answer:
Explanation:
The acidity of a solution is measured by its pH, which is the logarithm of the inverse of the molar concentration of hydronium (H₃O⁺) ions:
- pH = log 1 / [H₃O⁺] = - log [H₃O⁺]
When you know the pH value you can find hydronium concentration using the antilogaritm function:
![pH=-log[H_3O^{+}]\\ \\ {[H_3O^+]}=10^{-pH}\\ \\ {[H_3O^+]}=10^{-2.50}\\ \\ {[H_3O^+]}=0.0032](https://tex.z-dn.net/?f=pH%3D-log%5BH_3O%5E%7B%2B%7D%5D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-pH%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D10%5E%7B-2.50%7D%5C%5C%20%5C%5C%20%7B%5BH_3O%5E%2B%5D%7D%3D0.0032)
The unit of molar concentration is M.
To prove your answer you can take the logarithm of 0.0316:
You might be interested in
The use of light that has a lower frequency
Approximate molecular masses:
Molecular mass of C = 12
Molecular mass of H = 1
Let n = moles required for CH₂.
Then
nCH₂ = 98
n(12 + 2*1) = 98
14n = 98
n = 7
Answer: The molecular formula is 7CH₂
The answer to this question is bohr Greek
0.001 would be the smallest.
Good Luck! :)
33233728793278237876548742787874578378572098-2932-=93788784787489