Answer:

Explanation:
There are two heat flows in this process and, since energy (heat) can neither be destroyed nor created, the energy change for the system must equal zero.
Data:
For Fe, m₁ = ?; C₁ = 0.452 J°C⁻¹g⁻¹; Ti = 2.00 °C; T_f = 21.50 °C
For H₂O, m₂ = 120 g; C₂ = 4.18 J°C⁻¹g⁻¹; Ti = 22.00 °C; T_f = 21.50 °C
Calculations:
1. Temperature changes
ΔT₁ = T_f - Ti = 21.50 °C - 2.00 °C = 19.50 °C
ΔT₂ = T_f - Ti = 21.50 °C - 22.00 °C = -0.50 °C
2. Mass of steel rod


Answer:
Explanation:
Both metal and wooden bowls are at the same temperature . But wood is non-conductor of heat whereas metal is conductor of heat .
If we touch the wooden bowl , heat flows from hot to cold object . Since the finger is at higher temperature , heat flows from finger to wooden bowl . But , since wood is non conducting , it does not allow heat to be conducted through it . Hence very less heat will be conducted from our finger .
On the other hand , if we touch a metal bowl , heat flows from finger to the metal bowl , without any hinderance . Hence rate of heat flow will be fast in case of metal bowl . As a result of it , we feel cool in touching metal bowl . This feeling will be absent in case of wooden bowl.
First you need to calculate the number of moles of aluminium and copper chloride.
number of moles = mass / molecular weight
moles of Al = 512 / 27 = 19 moles
moles of CuCl = 1147 / 99 = 11.6 moles
From the reaction you see that:
if 2 moles of Al will react with 3 moles of CuCl
then 19 moles of Al will react with X moles of CuCl
X = (19 × 3) / 2 = 28.5 moles of CuCl, way more that 11.6 moles of CuCl wich is the quantity you have. So the copper chloride is the limiting reagent.