Answer:
6400
Step-by-step explanation:
so every 5 hours it gains 800 bacteria so 4800+800=5600 (hour 10)
and 5600+800=6400 (hour 15)
Answer: 6
Step-by-step explanation:
6x6x6 =216
Answer:
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
Step-by-step explanation:
The sample proportion is p2= 7/27= 0.259
and q2= 0.74
The sample size = n= 27
The population proportion = p1= 0.4
q1= 0.6
We formulate the null and alternate hypotheses that the new program is effective
H0: p2> p1 vs Ha: p2 ≤ p1
The test statistic is
z= p2- p1/√ p1q1/n
z= 0.259-0.4/ √0.4*0.6/27
z= -0.141/0.09428
z= -1.496
The significance level ∝ is 0.05
The critical region for one tailed test is z ≤ ± 1.645
Since the calculated value of z= -1.496 does not fall in the critical region z < -1.645 we conclude that the new program is effective. We fail to reject the null hypothesis .
The answer to the equation is 18 which is a composite whole number. the answer is C
Step-by-step explanation:
Explanation:
The trick is to know about the basic idea of sequences and series and also knowing how i cycles.
The powers of i will result in either: i, −1, −i, or 1.
We can regroup i+i2+i3+⋯+i258+i259 into these categories.
We know that i=i5=i9 and so on. The same goes for the other powers of i.
So:
i+i2+i3+⋯+i258+i259
=(i+i5+⋯+i257)+(i2+i6+⋯+i258)+(i3+i7+⋯+i259)+(i4+i8+⋯+i256)
We know that within each of these groups, every term is the same, so we are just counting how much of these are repeating.
=65(i)+65(i2)+65(i3)+64(i4)
From here on out, it's pretty simple. You just evaluate the expression:
=65(i)+65(−1)+65(−i)+64(1)
=65i−65−65i+64
=−65+64
=−1
So,
i+i2+i3+⋯+i258+i259=-1