Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
Answer:
The gas was N₂
Explanation:
V = 3.6L
P = 2.0 atm
T = 24.0°C = 297K
R = 0.0821 L.atm/K.mol
m = 8.3g
M = molar mass = ?
Using ideal gas equation;
PV = nRT
n = no. Of moles = mass / molar mass
n = m/M
PV = m/M * RT
M = mRT / PV
M = (8.3*0.0821*297) / (2.0*3.6)
M = 28.10
Since X is a diatomic molecule
M = 28.10 / 2 = 14.05 g/mol
M = Nitrogen
X = N₂
The pressure of the gas = 40 atm
<h3>Further explanation</h3>
Given
200 ml container
P = 2 atm
final volume = 10 ml
Required
Final pressure
Solution
Boyle's Law
At a fixed temperature, the gas volume is inversely proportional to the pressure applied

Input the value :
P₂ = P₁V₁/V₂
P₂ = 2 x 200 / 10
P₂ = 40 atm
Molarity is expressed as
the number of moles of solute per volume of the solution. The mass of oxalic acid dihydrate needed for the solution is calculated as follows:
Amount in moles: (0.357 mol H2C2O4•2H2O / L) (.250 L ) = 0.0893 mol H2C2O4•2H2O
Amount in mass : 0.0893 mol H2C2O4•2H2O (126.08 g / mol ) = 11.2589 g H2C2O4•2H2O
Hope this answers the question. Have a nice day.