This requires familiarity with the different theories (or concepts) of acids and bases.
On the Arrhenius concept, an acid is a substance that produces an H⁺ ion in water such that the H⁺ concentration increases, and a base is a substance that produces an OH⁻ ion in water such that the OH⁻ concentration increases.
On the Brønsted–Lowry concept, an acid is a substance that donates a proton (which is basically an H⁺ ion) in a solvent, and a base is a substance that accepts a proton in a solvent.
On the Lewis concept, an acid is a substance that accepts an electron pair in a solvent, and a base is a substance that donates an electron pair in a solvent.
The concepts become progressively broader, i.e., the Arrhenius concept is the most restrictive and the Lewis concept is the least restrictive. As a corollary, an Arrhenius acid or base is also both a Brønsted–Lowry acid or base and a Lewis acid or base, respectively; a Brønsted–Lowry acid or base is not necessarily an Arrhenius acid or base, but an Arrhenius acid or base is also a Lewis acid or base, respectively. And finally, a Lewis acid or base may not necessarily be either an Arrhenius or a Brønsted–Lowry acid or base.
So, with the above concepts in mind, we can match the statements in column A with the type of acid or base in column B:

Explanation:
Not only did outermost electron determine the valence electron, but also <em>periodic</em><em> </em><em>table</em><em>.</em><em> </em>whatever group they fall into in periodic table each valence electrons present in a particular atom e.g K and Ca belong to group 1 and 2 respectively and k has 1 and Ca have 2 in each outermost electron
Silver nitrate is an ionic bond because it is made up of metal, sliver, and a non-metal, nitrogen and oxygen. It is also a polyatomic ion (you only find polyatomic ions in ionic bonds).
All the elements you listed share a common trait: they are synthetic, radioactive elements. These elements do not have a stable isotope, so for a radioactive element, its most stable isotope's atomic mass will be listed in parentheses.
One such example would be plutonium. This element has 6 different isotopes with differing half-lives. The most stable isotope for plutonium is plutonium-244, with a half-life of around 80 million years. Therefore, the atomic mass listed for plutonium will be (244).
Answer:
the partial pressure of the O2 is 0.167 atm
Explanation:
The computation of the partial pressure of the O2 is shown below:
As we know that
P = P_N2 + P_O2 + P_CO2
P_O2 = P - P_N2 - P_CO2
= (1.007 - 0.79 - 0.05)
= 0.167 atm
Hence, the partial pressure of the O2 is 0.167 atm
we simply applied the above formula