Answer:
Energy is added (postive enthalpy)
Explanation:
Ice melting means solid turns into liquid. Solid is more stable than liquid thus you must put in energy to weaken the forces of solid and turn it into liquid. Thus, you must put in energy to melt ice. This makes the enthalpy of the system to be positive.
Kinetic and nuclear are energies
The answer for the following problem is mentioned below.
- <u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
Explanation:
Given:
Initial pressure (
) = 290 kPa
Final pressure (
) = 104 kPa
Initial volume (
) = 18.9 ml
To find:
Final volume (
)
We know;
From the ideal gas equation;
P × V = n × R × T
where;
P represents the pressure of the gas
V represents the volume of gas
n represents the no of the moles
R represents the universal gas constant
T represents the temperature of the gas
So;
P × V = constant
P ∝ 
From the above equation;

represents the initial pressure of the gas
represents the final pressure of the gas
represents the initial volume of the gas
represents the final volume of the gas
Substituting the values of the above equation;
= 
= 52.7 ml
<u><em>Therefore the final volume of the gas is 52.7 ml.</em></u>
The peptide given above is made up of the following amino acids: glycine [G], leucine [L], valine [V], isoleucine [I] and tryptophan [W]. These amino acids are joined together by amide bond to form peptide. Peptides usually have two terminals, the N terminal and the C terminal. For GLVIW, the C terminal end amino acid is tryptophan, that is the last amino acid on the peptide chain. The N terminal amino acid is glycine, that is, the first amino acid on the peptide chain.
Answer:
25°C
Explanation:
Combined Gas Law (P₁V₁)/T₁ = (P₂V₂)/T₂
(0.947 atm)(150 mL)/25°C = (0.987 atm)(144mL)/T₂
5.682 = 142.128/T₂
T₂ = 142.128/5.682
T₂ = 25.0137272756°C = 25°C