Scalar quantities have only a magnitude. So the answer is scalar quantities.
Given: Change of x is 35.4m, Velocity Final=7.10 m/s, Velocity Initial=0m/s
Find: Acceleration
Analysis:
Vf²=Vi²+2aΔx (Velocity final squared equals Velocity initial squared plus 2 times acceleration times change of x)
(7.10 m²/s)²=(0 m/s)²+2a(35.4 m)
50.41 m/s²=(70.8 m)a
a=0.712 m/s²
Sippen lein an hr later is theanswer to both
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.