The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
Answer:
A. 0.289g/mL
Explanation:
Using the equation for density which is d = m/v or density = mass/volume, we input 1.3g/4.5mL and get 0.289g/mL.
Answer:
<em>The depth will be equal to</em> <em>6141.96 m</em>
<em></em>
Explanation:
pressure on the submarine
= 62 MPa = 62 x 10^6 Pa
we also know that
= ρgh
where
ρ is the density of sea water = 1029 kg/m^3
g is acceleration due to gravity = 9.81 m/s^2
h is the depth below the water that this pressure acts
substituting values, we have
= 1029 x 9.81 x h = 10094.49h
The gauge pressure within the submarine
= 101 kPa = 101000 Pa
this gauge pressure is balanced by the atmospheric pressure (proportional to 101325 Pa) that acts on the surface of the sea, so it cancels out.
Equating the pressure
, we have
62 x 10^6 = 10094.49h
depth h = <em>6141.96 m</em>
Answer:
b
Explanation:
they both have a neutral charge so they couldn't be positive or negative since that wouldn't come from anywhere