Answer:
Temperature
Explanation:
The heat flows from high temperature to low temperature.So we can say that temperature is the property that decide the direction of heat flow.Like in the electric system current flow high voltage to low voltage ,so we can say that voltage is the property which determine the direction of current flow.
So the answer is Temperature.
Answer:
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
Explanation:
Hi there!
The total momentum of the system is given by the sum of the momentum vectors of each cart. The momentum is calculated as follows:
p = m · v
Where:
p = momentum.
m = mass.
v = velocity.
Then, the momentum of the system will be the momentum of cart A plus the momentum of cart B (let´s consider the right as the positive direction):
mA · vA + mB · Vb
0.450 kg · 0.850 m/s + 0.300 kg · (- 1.12 m/s) = 0.047 kg · m/s
The right answer is D) the total momentum of the system is 0.047 kg · m/s toward the right.
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />
If the refractive index of some substance is 1.33, then
the speed of light in that substance is
(speed of light in vacuum) / (1.33) =
(299,792,458 m/s) / (1.33) = <em>225,407,863 m/s</em>