Answer:
The answer to your question should be D.
Explanation:
reactants are on the laft side of arrow and products are on right side of arrow
Using the given equation:
di = 20.0 * 10.0 / 20.0 - 10.0
di = 200/10
di = 20.0 cm
The answer is A.
When red light illuminates a grating with 7000 lines per centimeter, its second maximum is at 62.4°. What is the wavelength of this light?
ans: 633nm
Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C
B. Decreasing surface area of a solid reactant. The more surface area showing, the quicker the reaction rate.