For the experiment, you need 2L of cola. Your first option would be to purchase 1 2L bottle of cola for $2.25.
To calculate the second option, let's convert milliliters to liters first. There are 1,000 milliliters in 1 liter. With this, we know that there are 2,000 milliliters in 2 liters. Option 2 comes in 500-milliliter cans, which means that you would need 4 of them (2,000/500 = 4). 4 cans multiplied by $0.50 would cost you $2.00.
Let's check the cost of your answer options.
A. 4 cans - As seen above, this would cost $2.00.
B. 1 bottle - From the question, we know this would cost $2.25.
C. 2 bottles - This would be more soda than you need and would cost $4.50 ($2.25x2)
D. 1 can - This would be .5L and not enough soda for the experiment.
E. 5 cans - This would cost $2.50, but would be an extra 500mL of soda.
F. 2 cans - This would only be 1L of soda and not enough for the experiment.
G. 3 cans - This would be 1.5L of soda and not enough for the experiment either.
For the best price option, you would choose A (four cans of soda). This would give you the amount of soda that you need at the lowest price.
Answer:
42.86%.
Step-by-step explanation:
Reduction in price = $70.00 - $40.00 = $30.00
Reduction in percentage = ($30.00 ÷ $70.00) x 100 = 42.86%
The price of the videogame was reduced by 42.86%.
Answer:
Therefore Marcus is incorrect.
Step-by-step explanation:
Total ticket that Marcus bought= 100%.
Marcus used 50% of ticket on rides.
and he used
of the tickets on the video games.
The percentage form of any number x is

The percentage form of
is

=25%
Therefore rest tickets are
=Total ticket-( ticket used in rides + ticket used in video games)
=100% - (50%+25%)
=100% - 75%
=25%
Therefore he used 25% of tickets in batting cage.
But he said that Marcus said that he used 24% of ticket in batting cage.
Therefore Marcus is incorrect.
Answer:
1.04
Step-by-step explanation:
8.04 - 7 = 1.04
I hope this helps!
Answer: It's a tie between f(x) and h(x). Both have the same max of y = 3
The highest point shown on the graph of f(x) is at (x,y) = (pi,3). The y value here is y = 3.
For h(x), the max occurs when cosine is at its largest: when cos(x) = 1.
So,
h(x) = 2*cos(x)+1
turns into
h(x) = 2*1+1
h(x) = 2+1
h(x) = 3
showing that h(x) maxes out at y = 3 as well
--------------------------------
Note: g(x) has all of its y values smaller than 0, so there's no way it can have a max y value larger than y = 3. See the attached image to see what this graph would look like if you plotted the 7 points. A parabola seems to form. Note how point D = (-3, -2) is the highest point for g(x). So the max for g(x) is y = -2