<h2><em>A reference point is a place or object used for comparison to determine if something is in motion. An object is in motion if it changes position relative to a reference point. You assume that the reference point is stationary, or not moving.</em></h2>
Answer:
5.6ft
Explanation:
on avgerage a male gets 5 foot 6 inches
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,

Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T


The number of the atoms N, can be calculated as,

Where
Density
Molar Mass
A = Area
L = Length
Avogadro number


Then applying the equation about the dipole moment associated with an iron bar we have,



PART B) With the dipole moment we can now calculate the Torque in the system, which is



<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>
Answer: Eclipse
Explanation: A lunar eclipse occurs when the full moon moves through the shadow of the Earth. This can only happen when the Earth is between the Moon and the Sun and all three are lined up in the same plane, called the ecliptic. The ecliptic is the plane of Earth's orbit around the Sun.
The potential difference across the parallel plate capacitor is 2.26 millivolts
<h3>Capacitance of a parallel plate capacitor</h3>
The capacitance of the parallel plate capacitor is given by C = ε₀A/d where
- ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m,
- A = area of plates and
- d = distance between plates = 4.0 mm = 4.0 × 10⁻³ m.
<h3>Charge on plates</h3>
Also, the surface charge on the capacitor Q = σA where
- σ = charge density = 5.0 pC/m² = 5.0 × 10⁻¹² C/m² and
- a = area of plates.
<h3>
The potential difference across the parallel plate capacitor</h3>
The potential difference across the parallel plate capacitor is V = Q/C
= σA ÷ ε₀A/d
= σd/ε₀
Substituting the values of the variables into the equation, we have
V = σd/ε₀
V = 5.0 × 10⁻¹² C/m² × 4.0 × 10⁻³ m/8.854 × 10⁻¹² F/m
V = 20.0 C/m × 10⁻³/8.854 F/m
V = 2.26 × 10⁻³ Volts
V = 2.26 millivolts
So, the potential difference across the parallel plate capacitor is 2.26 millivolts
Learn more about potential difference across parallel plate capacitor here:
brainly.com/question/12993474