An ideal voltage source provides no energy when it is loaded by an open circuit (i.e. an infinite impedance), but approaches infinite energy and current when the load resistance approaches zero (a short circuit). ... An ideal current source has an infinite output impedance in parallel with the source.
The difference between the engineering design process and the reverse engineering process are there, but very subtle. The engineering design process is a process based on careful planning and months of designing to create a blueprint for a certain project. The reverse engineering process is the base of learning to create something by working backwards on a previously made inspiration for your project. Three differences are that that the engineering design process doesn't require any physical learning and is more based on mental and written learning (unlike the reverse engineering process). Another difference includes that in the reverse engineering process you don't need to take anything apart and learn how things work based on the on hands aspect of this variety of engineering. The final difference is that the engineering design project is made fresh from your own thoughts and not based off of a similar project.
Answer:
The description including its scope is presented throughout the section below.
Explanation:
- Such operation must be carried out in compliance with all statutes, legislation, building standards, guidelines, and rules relating to that same task, not all of which are restricted to either the U.S Disability Act, the Ecological laws as well as the workplace Safety Act as modified.
- This same consultant shall appoint and could be completely liable for almost all processes and sequences just for conducting the Job.
Answer:
percentage change in volume is 2.60%
water level rise is 4.138 mm
Explanation:
given data
volume of water V = 500 L
temperature T1 = 20°C
temperature T2 = 80°C
vat diameter = 2 m
to find out
percentage change in volume and how much water level rise
solution
we will apply here bulk modulus equation that is ratio of change in pressure to rate of change of volume to change of pressure
and we know that is also in term of change in density also
so
E =
................1
And
............2
here ρ is density
and we know ρ for 20°C = 998 kg/m³
and ρ for 80°C = 972 kg/m³
so from equation 2 put all value


dV = 0.0130 m³
so now % change in volume will be
dV % =
× 100
dV % =
× 100
dV % = 2.60 %
so percentage change in volume is 2.60%
and
initial volume v1 =
................3
final volume v2 =
................4
now from equation 3 and 4 , subtract v1 by v2
v2 - v1 =
dV =
put here all value
0.0130 =
dl = 0.004138 m
so water level rise is 4.138 mm
Answer:
surface temp of fuel rod = 678.85 K
Explanation:
Given data :
D1 = 25 mm
D2 = 50 mm
T2 = 335 k
T∞ = 300 k
hconv = 0.15 w/m^2.k
ε2 = 0.05
ε1 = 1
Determine energy at Q23
Q23 = Qconv + Qrad
attached below is the detailed solution
Insert given values into equation 1 attached below to obtain the surface temperature of the fuel rod ( T1 )