Nec Article 430 covers selection of time-delay fuses for motor- overload protection.
<h3>What article in the NEC covers motor overloads?</h3>
Article 430 that is found in National Electrical Code (NEC) is known to be state as “Motors, Motor Circuits and Controllers.” .
Note that the article tells that it covers areas such as motors, motor branch-circuit as well as feeder conductors, motor branch-circuit and others.
Therefore, Nec Article 430 covers selection of time-delay fuses for motor- overload protection.
Learn more about motor- overload from
brainly.com/question/20738481
#SPJ1
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values


Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>