Answer:
b) pH = 9.25
Explanation:
- NH4+(aq) + H2O(l) ↔ NH3(aq) + H3O+(aq)
- NH3 + H2O ↔ NH4+ + OH-
- 2 H2O ↔ H3O+ + OH-
⇒ Kb = [ NH4+ ] * [ OH- ] / [ NH3 ] = 1.86 E-5......from literature
mass balance NH4+:
⇒ M NH4+ = [ NH4+ ] - [ OH- ]
∴ [ NH3 ] ≅ M NH4+ = 0.26 M
⇒ Kb = (( 0.26 + [ OH- ] )) * [ OH- ] / 0.26 = 1.86 E-5
⇒ 0.26 [ OH-] + [ OH- ]² = 4.836 E-6
⇒ [ OH- ]² + 0.26 [ OH- ] - 4.836 E-6 = 0
⇒ [ OH- ] = 1.859 E-5 M
⇒ pOH = - Log ( 1.859 E-5 )
⇒ pOH = 4.7305
⇒ pH = 14 - pOH = 9.269
The molecular formula shows the number of atoms present. The molecular formula of the gas is most likely ClO2.
In terms of gas density and molar mass, the ideal gas equation can be written in the form; PM = dRT
Where;
P = pressure of the gas
M = molar mass of the gas
d = density of the gas
R = molar gas constant
T = temperature of the gas
Making the molar mass of the gas the subject of the formula;
M = dRT/P
d = 2.875 g/L
R = 0.082 atmLmol-1K-1
T = 11°C + 273 = 284 K
P = 750.0 mm Hg or 0.99 atm
Substituting values;
M = 2.875 g/L × 0.082 atmLmol-1K-1 × 284 K/ 0.99 atm
M = 67.6 g/mol
The gas is most likely ClO2.
Learn more: brainly.com/question/11969651
This reaction would produce salt and water- Sodium Sulphate and Water.
H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O
Answer:
a) kc = 0,25
b) [A] = 0,41 M
c) [A] = <em>0,8 M</em>
[B] =<em>0,2 M</em>
[C] = <em>0,2M</em>
Explanation:
The equilibrium-constant expression is defined as the ratio of the concentration of products over concentration of reactants. Each concentration is raised to the power of their coefficient.
Also, pure solid and liquids are not included in the equilibrium-constant expression because they don't affect the concentration of chemicals in the equilibrium.
If global reaction is:
A(g) + B(g) ⇋ 2 C(g) + D(s)
The kc = ![\frac{[C]^2}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5E2%7D%7B%5BA%5D%5BB%5D%7D)
a) The concentrations of each compound are:
[A] =
= <em>0,4 M</em>
[B] =
= <em>0,1 M</em>
[C] =
= <em>0,1 M</em>
<em>kc = </em>
= 0,25
b) The addition of B and D in the same amount will, in equilibrium, produce these changes:
[A] =
[B] =
[C] = 
0,25 = ![\frac{[0,60+2x]^2}{[1,60-x][0,60-x]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B0%2C60%2B2x%5D%5E2%7D%7B%5B1%2C60-x%5D%5B0%2C60-x%5D%7D)
You will obtain
3,75x² +2,95x +0,12 = 0
Solving
x =-0,74363479081119 → No physical sense
x =-0,043031875855476
Thus, concentration of A is:
= <em>0,41 M</em>
c) When volume is suddenly halved concentrations will be the concentrations in equilibrium over 2L:
[A] =
= <em>0,8 M</em>
[B] =
= <em>0,2 M</em>
[C] =
= <em>0,2M</em>
I hope it helps!
Answer:
3 mol AlCl₃.
Explanation:
Hello!
In this case, according to the specified reactants and products, it is possible to set up the following balanced chemical reaction:

Whereas we evidence the 1:3 mole ratio between aluminum nitrate and sodium chloride; thus, since different moles were reacting, we need to identify the limiting reactant by computing the moles of AlCl₃ produced by each reactant as follows:

Thus, we infer that NaCl is the limiting reactant as it produces the fewest moles of AlCl₃; consequently the produced amount of this product is 3 mol.
Best regards!