Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Answer: 1. moles
2. 90 mg
Explanation:
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus moles of ozone is removed by = moles of sodium iodide.
Thus moles of sodium iodide are needed to remove moles of
2.
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by = moles of sodium iodide.
Mass of sodium iodide= (1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of .
Heat the jar of honey up enough to where you can pour it
During cellular respiration, the carbon and hydrogen atoms change partners and bond with oxygen atoms instead. The carbon-hydrogen bonds are replaced by carbon-oxygen and hydrogen-oxygen bonds. As the electrons of these bonds "fall" toward oxygen, energy is released.