Independent Variable: a variable that you can change in an experiment
Dependent Variable: something that changes as you change the independent variable
control variable: something that is not changed throughout the experiment
Answer:
T2 = 2843.1 oK. This is a huge temperature. Check it for errors.
Explanation:
Remark
This is the same question as the other one I've answered. Only the numbers have been altered.
Givens
v1 = 56 mL
P1 = 1 atm
T1 = 273o K
v2 = 162
P2 = 3.6 atm
T2 = ?
Formula
Vi * P1 / T1 = V2 * P2/T2
Solution
Rearrange the formula so T2 is on the left
T2 = V2 P2 * T1 / (V1 * P1) Now just put the numbers in.
T2 = 162 * 3.6* 273 / (56 *1)
T2 = 159213.6/56
T2 = 2843.1
Answer:
Pure iron sulfide is homogeneous (uniform in appearance and properties), shows constant composition (a consistent ratio of iron to sulfur throughout any sample of it, large or small), consists of molecules all of one type, is no longer separable into two separate substances without another chemical reaction, and is .
Explanation:
Mixtures in two or more phases are heterogeneous mixtures. ... The exception would be solutions that contain another phase of matter. For example, you can make a homogeneous solution of sugar and water, but if there are crystals in the solution, it becomes a heterogeneous mixture.
Answer:
Qsp > Ksp, BaCO3 will precipitate
Explanation:
The equation of the reaction is;
Na2CO3 + BaBr2 -------> 2NaBr + BaCO3
Since BaCO3 may form a precipitate we can determine the Qsp of the system.
Number of moles of Na2CO3 = 0.96g/106 g/mol = 9.1 * 10^-3 moles
concentration of NaCO3 = number of moles/volume of solution = 9.1 * 10^-3 moles/10 L = 9.1 * 10^-4 M
Number of moles of BaBr2 = 0.20g/297 g/mol = 6.7 * 10^-4 moles
concentration of BaBr2 = 6.7 * 10^-4 moles/10 L = 6.7 * 10^-5 M
Hence;
[Ba^2+] = 6.7 * 10^-5 M
[CO3^2-] = 9.1 * 10^-4 M
Qsp = [6.7 * 10^-5] [9.1 * 10^-4]
Qsp = 6.1 * 10^-8
But, Ksp for BaCO3 is 5.1*10^-9.
Since Qsp > Ksp, BaCO3 will precipitate
<u>Answer:</u> The correct answer is Option 3.
<u>Explanation:</u>
All the radioisotope decay processes follow first order kinetics.
Rate law expression for first order kinetics is given by the equation:

where,
k = rate constant = ?
t = time taken for decay process = 8.32 seconds
a = initial amount of the reactant = 80 mg
a - x = amount left after decay process = 20 mg
Putting values in above equation, we get:

The equation used to calculate half life for first order kinetics:

where,
= half life of the reaction = ?
k = 
Putting values in above equation, we get:

Hence, the correct answer is Option 3.