Gravitational potential energy can be given by the equation
PE = mgh
where m is the mass,
g is the gravitational constant 9.81 or 10 depending on rounding
and h is the height
well weight is a force equiavlent to
W= m*g
so comparing that to the potential energy equation, divide the potential energy by the height and you will get weight in Newtons
Answer:
Option E is correct 310N
Explanation:
Given that the force used to push the crate is F = 200N
The force directed 20° below the horizontal
Mass of crate is m = 25kg
Weight of the crate can be determine using
W = mg
g is gravitational constant =9.8m/s²
W = 25×9.8
W = 245 N
Check attachment. For free body diagram and better understanding
Using newton second law along the vertical axis since we want to find the normal force
ΣFy = m•ay
ay = 0, since the body is not moving in the vertical or y direction
N—W—F•Sin20 = 0
N = W+F•Sin20
N = 245+ 200Sin20
N = 245 + 68.4
N = 313.4 N
The normal force is approximately 310 N to the nearest ten
Answer:
Thomson's atomic model was successful in explaining the overall neutrality of the atom. However, its propositions were not consistent with the results of later experiments. In 1906, J. J. Thomson was awarded the Nobel Prize in physics for his theories and experiments on electricity conduction by gases.
Summary. J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."