1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hodyreva [135]
3 years ago
12

A Martian rover is descending a hill sloped at 30° with the horizontal. It travels with a constant velocity of 2 meters/second.

Calculate its horizontal velocity.
Physics
2 answers:
kodGreya [7K]3 years ago
8 0
Vx = 2*cos30 = 1.73m's
Other words:
D = Vo*t = 1.4 * 21 = 31.5m. @ 30 Deg.
Dy = 31.5*sin30 = 15.75 m.
uysha [10]3 years ago
7 0

<u>Answer:</u> The horizontal velocity of rover is 1.73 m/s

<u>Explanation:</u>

Horizontal velocity is defined as the velocity of body proceeding in the horizontal direction. This velocity proceeds in the 'x' direction.

Mathematically,

V_x=V_o\cos \theta

where,

V_o = constant velocity of rover = 2 m/s

\cos \theta = cosine function of angle 30°

Putting values in above equation, we get:

V_x=2\times \cos (30^o)\\\\V_x=1.73m/s

Hence, the horizontal velocity of rover is 1.73 m/s

You might be interested in
Current can flow through an electric circuit only when the switch is .
Alika [10]
Current can flow when the switch is closed
5 0
3 years ago
Read 2 more answers
A child kicks a ball horizontally with a speed of 4.8 m/s off a deck 3.5 m off the ground. How far, in meters, from the deck doe
Vesna [10]

Answer:

2.605m

Explanation:

Using the formula for calculating Range (distance travelled in horizontal direction)

Range R = U√2H/g

U is the speed = 4.8m/s

H is the maximum height = ?

g is the acc due to gravity = 9.8m/s²

R = 3.5m

Substitute into the formula and get H

3.5 = 4.8√2H/9.8

3.5/4.8 = √2H/9.8

0.7292 = √2H/9.8

square both sides

0.7292² = 2H/9.8

2H = 0.7292² * 9.8

2H = 5.21

H = 5.21/2

H = 2.605m

Hence the height of the ball from the ground is 2.605m

7 0
3 years ago
A 41.0 g marble moving at 2.30 m/s strikes a 25.0 g marble at rest. What is the speed of each marble immediately after the colli
Gre4nikov [31]

Answer:

speed of each marble after collision will be 1.728 m/sec

Explanation:

We have given mass of the marble m_1=41gram=0.041kg

Velocity of marble v_1=2.30m/sec

Its collides with other marble of mass 25 gram

So mass of other marble m_2=25gram=0.025kg

Second marble is at so v_2=0m/sec

We have to find the velocity of second marble

From momentum conservation we know that

m_1v_1+m_2v_2=(m_!+m_2)v, here v is common velocity of both marble after collision

So 0.041\times 2.30+0.025\times 0=(0.041+0.025)v

v = 1.428 m /sec

So speed of each marble after collision will be 1.728 m/sec

6 0
3 years ago
While walking along the shore of a lake Travis felt a cold breeze. What type of heat energy transfer is this an example of?
AfilCa [17]
Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.

Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
3 0
3 years ago
An 85,000 kg stunt plane performs a loop-the-loop, flying in a 260-m-diameter vertical circle. at the point where the plane is f
konstantin123 [22]
A) When the plane is flying straight down, there are three forces acting on it:
- the centripetal force  F=m \frac{v^2}{r}, directed toward the center of the circle (so, horizontally)
- the weight of the plane: W=mg, downward, so vertically
- a third force, given by the propulsion of the plane, which is accelerating it towards the ground (because the problem says that the plane has an acceleration of a=12 m/s^2 towards the ground)

The radius of the circle is r= \frac{260 m}{2} = 130 m, so the centripetal force acting on the plane is
F_c=m \frac{v^2}{r} = \frac{(85000 kg)(55 m/s)^2}{130 m}=1.98 \cdot 10^6 N
On the vertical axis, we have two forces: the weight
W=mg=(85000 kg)(9.81 m/s^2)=8.34 \cdot 10^5 N
and the other force F given by the propulsion. Since we know that their sum should generate an acceleration equal to a=12 m/s^2, we can find the magnitude of this other force F by using Newton's second law:
F+mg=ma
F=m(a-g)=(85000kg)(12 m/s^2-9.81 m/s^2)=1.86 \cdot 10^5 N

So, the net force acting on the plane will be the resultant of the centripetal force (acting in the horizontal direction) and the two forces W and F (acting in the vertical direction):
R= \sqrt{(F_c^2+(W+F)^2}=
= \sqrt{(1.98\cdot 10^6N)^2+(8.34 \cdot 10^5N+1.86 \cdot 10^5 N)^2}  =2.23 \cdot 10^6 N

(b) The tangent of the angle with respect to the horizontal is the ratio between the sum of the forces in the vertical direction (taken with negative sign, since they are directed downward) and the forces acting in the horizontal direction, so:
\tan \theta =  \frac{-(W+F)}{F_c}= -0.5
And so, the angle is
\theta = \arctan (-0.5)=-26.8 ^{\circ}
 
7 0
3 years ago
Other questions:
  • When released , what is the kinetic energy of the 1c charge of the preceding problem if it flies past its starting position?
    11·1 answer
  • Find the magnitude of the vector 34 i^+ 14 j^m.
    8·1 answer
  • An electron is located on a pinpoint having a diameter of 3.52 µm. What is the minimum uncertainty in the speed of the electron?
    15·1 answer
  • Most people would consider a comfortable room temperature to be
    11·2 answers
  • At what distance must a star be to have its apparent magnitude equal to its absolute magnitude?
    15·1 answer
  • Our resources can only supply a small fraction of our wants. true false
    5·1 answer
  • If a car has an initial velocity of 20 m/s and accelerates at 2.0 m/s² for 100 m, what is its final velocity?
    8·1 answer
  • A force of 36.0 N is required to start a 3.0-kg box moving across a horizontal concrete floor. Part A) What is the coefficient o
    15·1 answer
  • Does the nuclear mass or the charge of the nucleus determine what element an atom is?
    13·2 answers
  • CAT NOIR YAHHHHHHHHHHHHH
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!