Answer:
why should we do , do by your own , no sense
Explanation:
Answer:
The SI unit for length is meters(m), for mass is kilograms(kg)
Explanation:
hope it helps
Answer:
ΔF=125.22 %
Explanation:
We know that drag force on the car given as

=Drag coefficient
A=Projected area
v=Velocity
ρ=Density
All other quantity are constant so we can say that drag force and velocity can be given as

Now by putting the values



Percentage Change in the drag force



ΔF=125.22 %
Therefore force will increase by 125.22 %.
Answer:
(a) 
(b) 
(c) 
(d) 
Solution:
As per the question:
Angular velocity, 
Time taken by the wheel to stop, t = 2.4 h = 
Distance from the axis, R = 38 cm = 0.38 m
Now,
(a) To calculate the constant angular velocity, suing Kinematic eqn for rotational motion:

= final angular velocity
= initial angular velocity
= angular acceleration
Now,


Now,
(b) The no. of revolutions is given by:



(c) Tangential component does not depend on instantaneous angular velocity but depends on radius and angular acceleration:

(d) The radial acceleration is given by:

Linear acceleration is given by:


The speed of the sound wave in the medium, given the data is 3900 m
<h3>Velocity of a wave </h3>
The velocity of a wave is related to its frequency and wavelength according to the following equation:
Velocity (v) = wavelength (λ) × frequency (f)
v = λf
With the above formula, we can obtain the speed of the sound wave. Details below:
<h3>How to determine speed of the sound wave</h3>
The speed of the wave can be obtained as illustrated below:
- Frequency (f) = 600 Hz
- Wavelength (λ) = 6.5 m
- Velocity (v) =?
v = λf
v = 6.5 × 600
v = 3900 m
Thus, the speed of the sound wave in the medium is 3900 m
Learn more about wave:
brainly.com/question/14630790
#SPJ4