1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
15

How many combinations of players can a coach have if he needs to pick 2 out of a total of 4?

Mathematics
1 answer:
Leto [7]3 years ago
8 0

Answer:

the coach will have a combination of 2 players since there are initially 4 players on ground and he's picking two from them.

You might be interested in
An arcade booth at a county fair has a person pick a coin from two possible coins available and then toss it. If the coin chosen
nydimaria [60]

Answer:

<em>b. 0.6024</em>

Step-by-step explanation:

<u>Conditional Probability</u>

Suppose two events A and B are not independent, i.e. they can occur simultaneously. It means there is a space where the intersection of A and B is not empty:

P(A\cap B) \neq 0

If we already know event B has occurred, we can compute the probability that event A has also occurred with the conditional probability formula

\displaystyle P(A|B)=\frac{P(A\cap B)}{P(B)}

Now analyze the situation presented in the question. Let's call F to the fair coin with 50%-50% probability to get heads-tails, and U to the unfair coin with 32%-68% to get heads-tails respectively.

Since the probability to pick either coin is one half each, we have

P(U)=P(F)=50\%=0.5

If we had picked the fair coin, the probability of getting heads is 0.5 also, so

P(F\cap H)=0.5\cdot 0.5=0.25

If we had picked the unfair coin, the probability of getting heads is 0.32, so

P(U\cap H)=0.32\cdot 0.5=0.16

Being A the event of choosing the fair coin, and B the event of getting heads, then

P(B)=P(F\cap H)+P(U\cap H)=0.25+0.16=0.41

P(A\cap B)=P(F\cap H)=0.25

\displaystyle P(A|B)=\frac{0.25}{0.41}=0.61

The closest answer is

b. 0.6024

7 0
3 years ago
There are 10 yellow, 6 green, 9 orange, and 5 red cards in a stack of cards turned facedown. Once a card is selected, it is not
stepladder [879]

Answer: 1% red and 3% orange

explanation:

Not sure if its right but did my best!!

7 0
3 years ago
Read 2 more answers
Find the measure of each interior angle of a regular octagon. (A regular polygon is one that has all the same sides and angles).
NemiM [27]

The interior angle of a regular octagon is 135 degrees.

<h3>What is an octagon?</h3>

An octagon is a polygon that has 8 sides. Therefore, a regular octagon is a octagon with all it sides and angles equal to each other.

Therefore, the sum of angles in an octagon is each interior angle multiply by the number of sides.

Therefore,

n = number of sides = 8

Hence,

interior angle = (n - 2)180 / n

interior angle = (8 - 2)180 / 8

interior angle = 6 × 180 / 8

interior angle = 1080 / 8 = 135°

learn more on octagons here: brainly.com/question/3828395

#SPJ1

5 0
2 years ago
What is the base 8 representation of 112
Andreas93 [3]
Solution Step1 Converting 112 to base 10.
1*82=64
1*81=8
2*80=2
Adding all to get Ans=7410 <span>Step2 converting 7410 to 2</span> The equation calculation formula for 7410 number to 2 is like this below.
2|74 
2|37|0
2|18|1
2|9|0
2|4|1
2|2|0
2|1|0
2|1|1
<span>Ans:10010102</span> 

3 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Other questions:
  • OMG PLZ I NEED HELP I ONLY GOT 5 MINS LEFT FOR THIS QUIZ
    6·2 answers
  • The perimeter of a​ standard-sized rectangular rug is 40 ft. The length is 2 ft longer than the width. Find the dimensions.
    11·1 answer
  • Mr. Baker sells boxes of votive candles to stores.He also has a customer who places a fixed order for designer candle every mont
    15·1 answer
  • You have 960 grams of a radioactive kind of yttrium. How much will be left after 30 hours if
    8·1 answer
  • B.rotation 180
    11·1 answer
  • 100 points! will mark for brainliest!!<br><br> Solve for m<br> n+4m=d
    15·1 answer
  • Which set contains only whole numbers divisible by 6?
    13·1 answer
  • Greg wants to buy a new mini-van for his family. It costs $28,980 but the dealership is asking him to make a 16% down payment be
    14·2 answers
  • I cant seem to answer this question
    15·1 answer
  • Find the measure of the indicated angle to the nearest degree.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!