The measures of the unknown angles are as follows:
- ∠1 = 27
- ∠2 = 97°
- ∠3 = 56°
- ∠4 = 27°
- ∠5 = 56°
<h3>How to find the measures of angles?</h3>
When parallel lines are cut by a transversal line, angle relationships are formed such as corresponding angles, alternate angles, linear angles etc.
The parallel lines are line m and line l . The parallel lines m and l are cut by two transversals.
Therefore, the measures of the unknown angles are as follows:
∠1 = 27°(vertically opposite angles)
∠1 = ∠4(alternate angles)
∠4 = 27°
Alternate angles are congruent. Vertically opposite angles are congruent.
Therefore,
∠1 + ∠2 = 124
27 + ∠2 = 124
∠2 = 124 - 27
∠2 = 97°
∠3 = 180 - ∠2 - ∠1 (sum of angles on a straight line)
∠3 = 180 - 97 - 27
∠3 = 56°
∠5 = 180 - ∠4 - ∠2
∠5 = 180 - 97 - 27
∠5 = 56°
learn more on angles here: brainly.com/question/14684647
#SPJ1
Answer:
c)9
Step-by-step explanation:
f(x)=2x+1
f(1)=2(1)+1
f(1)=2+1
f(1)=3
g(x)=7/4 x+1
g(-4)=7/4 (-4)+1
g(-4)=-7+1
g(-4)=-6
f(1)-g(-4)=3-(-6)
=3+6
=9
<h3><u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>question</u><u> </u><u>please</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u></h3>
Single solution.
They have different slopes and must therefore have 1 solution.
The intersection point is at (-1,4). Hope this helps!
Answer:
{x,y}={−3,−1}
Step-by-step explanation: