Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
Kinetic energy: the energy of motion
Work: the change in kinetic energy
Power: the rate of work done
Explanation:
The kinetic energy of an object is the energy possessed by the object due to its motion. Mathematically, it is given by:

where
m is the mass of the object
v is its speed
The work done an object is the amount of energy transferred; according to the energy-work theorem, it is equal to the change in kinetic energy of an object:

where
is the final kinetic energy
is the initial kinetic energy
Finally, the power is the rate of work done per unit time. Mathematically, ti can be expressed as

where
W is the work done
t is the time elapsed
Learn more about kinetic energy, work and power:
brainly.com/question/6536722
brainly.com/question/6763771
brainly.com/question/6443626
brainly.com/question/7956557
#LearnwithBrainly
Astronomers find white dwarfs that distinguish them from main sequence stars because white dwarfs get really hot, we can search for their ultraviolet radiation.
<h3>What is a white dwarf?</h3>
A white dwarf is a very hot star that radiated much energy in the form of ultraviolet radiation.
This UV radiation is initially very bright and then these stars become red with time.
In conclusion, Astronomers find white dwarfs they can search for their ultraviolet radiation.
Learn more about white dwarfs here:
brainly.com/question/19602278
#SPJ1
B. Newton's First Law, I'm pretty sure. The first states that an object in motion stays in motion, and an object at rest stays at rest until an outside force is applied, and that seems pretty relevant.