Let the Blaise runs for time "t" to complete the race
so the total distance he moved is given by

Now Issac runs for time t = "t - 2*60"
because it took rest for 2 minutes

now it is given that Blaise wins by 10 m distance




now the distance moved by Blaise is given by

The correct answer would be the letter B.) NaF this attracts opposite charges. The final formula of sodium fluoride would be NaF it’s <span>compound is formed by the complete transfer of electrons from a metal to a nonmetal.</span>
Answer:
A. 69.9m
Explanation:
Given parameters:
Initial velocity = 10.5m/s
Final velocity = 21.7m/s
Time = 4.34s
Unknown:
Distance traveled = ?
Solution:
Let us first find the acceleration of the car;
Acceleration =
v is final velocity
u is initial velocity
t is the time
Acceleration =
= 2.58m/s²
Distance traveled;
V² = U² + 2aS
21.7² = 10.5² + 2 x 2.58 x S
360.64 = 2 x 2.58 x S
S = 69.9m
Answer:
I think its object 1
Explanation:
Because the object that has more weight has a greater momentum and the lightest object that has a less momentum will be easier to change because its lighter.
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
345.2 = 89.5(C)(305 - 285)
C = 0.1928 </span>J/g•K