1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luda [366]
3 years ago
13

What is the relationship between the electric force and each one of the charges?

Physics
1 answer:
Bess [88]3 years ago
3 0

Explanation: Electrostatic force is directly related to the charge of each object. So if the charge of one object is doubled, then the force will become two times greater.

You might be interested in
Looking that following diagram of bar magnets, determine if the magnets will or will not connect (attract) and why.
vovangra [49]

Answer: They will NOT connect because like poles are facing each other, and like poles repel each other.

3 0
3 years ago
Jenny was applying her makeup when she drove into the student parking lot last Friday morning . Unaware that Cheryl was stopped
Akimi4 [234]

Answer: F = 102141N

Explanation: <em><u>Newton's 2nd Law</u></em> states that a force can change the motion of a body. The relation is given by

F = m.a

whose units are:

[F] = N

[m] = kg

[a] = m/s²

Jenny's car, at the moment of the break, had acceleration:

a=\frac{\Delta v}{\Delta t}

a=\frac{11}{0.14}

a = 78.57 m/s²

Then, Force is

F = 1300*78.57

F = 102141 N

<u>Jenny's car experienced a force of </u><u>magnitude 102141N.</u>

6 0
3 years ago
A beam of light strikes a sheet of glass at an angle of 56.6° with the normal in air. You observe that red light makes an angle
Yuri [45]

Answer:

(a). Index of refraction are n_{red} = 1.344 & n_{violet} = 1.406

(b). The velocity of red light in the glass v_{red} = 2.23 ×10^{8} \ \frac{m}{s}

The velocity of violet light in the glass v_{violet} =2.13 ×10^{8} \ \frac{m}{s}

Explanation:

We know that

Law of reflection is

n_1 \sin\theta_{1} = n_2 \sin\theta_{2}

Here

\theta_1 = angle of incidence

\theta_2 = angle of refraction

(a). For red light

1 × \sin 56.6 = n_{red} × \sin 38.4

n_{red} = 1.344

For violet light

1 × \sin 56.6 = n_{violet} × \sin 36.4

n_{violet} = 1.406

(b). Index of refraction is given by

n = \frac{c}{v}

n_{red} = 1.344

v_{red} = \frac{c}{n_{red} }

v_{red} = \frac{3(10^{8} )}{1.344}

v_{red} = 2.23 ×10^{8} \ \frac{m}{s}

This is the velocity of red light in the glass.

The velocity of violet light in the glass is given by

v_{violet} = \frac{3(10^{8} )}{1.406}

v_{violet} =2.13 ×10^{8} \ \frac{m}{s}

This is the velocity of violet light in the glass.

8 0
3 years ago
You place a light bulb 8 cm in front of a concave mirror. You then move a sheet of paper back and forth in front of the mirror.
Alika [10]

sorry - late reply...just stumbled across tis...hope u can still use it :)


By the mirror equation: 1/di + 1/do = 1/f

<span>
</span>

<span>where di = distance to image = +12cm (+ for real image)</span>


and do = distance to object = +8cm


Substitute and solve for f, the focal length

<span><span>
1/12 + 1/8 = 1/f
</span><span>
1/f = (8 + 12) / 12 * 8 = 20/96
</span><span>
so f = 96/20 = 4.8 cm</span>
</span>
5 0
4 years ago
A projectile is launched diagonally into the air and has a hang time of 24.5 seconds. Approximately how much time is required fo
Rasek [7]

Answer:

t=12.25\ seconds

Explanation:

<u>Diagonal Launch </u>

It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.

The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is

x=v_ocos\theta t

\displaystyle y=y_o+v_osin\theta \ t-\frac{gt^2}{2}

Where vo is the magnitude of the initial velocity, \theta is the angle, t is the time and g is the acceleration of gravity

The maximum height the object can reach can be computed as

\displaystyle t=\frac{v_osin\theta}{g}

There are two times where the value of y is y_o when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making y=y_o

\displaystyle y_o=y_o+v_osin\theta\ t-\frac{gt^2}{2}

Removing y_o and dividing by t (t different of zero)

\displaystyle 0=v_osin\theta-\frac{gt}{2}

Then we find the total flight as

\displaystyle t=\frac{2v_osin\theta}{g}

We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is

\boxed{t=24.5/2=12.25\ seconds}

4 0
4 years ago
Other questions:
  • Carbon-14 is a naturally-occuring, stable isotope that is commonly used is scientific studies as a tracer and to date artifacts.
    13·2 answers
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • A student walks to school at a speed of 1.2 m/s. if the students mass is 53kg, what is the students kinetic energy
    15·1 answer
  • What are the four planets that orbit closets to the sun
    6·1 answer
  • A block slides down a frictionless plane having an inclination of 15.0°. The block starts from rest at the top, and the length o
    14·1 answer
  • A train travels 600 km in 1 hour what i the traina velocity
    13·2 answers
  • An atom with the expected number of neutrons, protons, and electrons is called a(n)
    5·1 answer
  • On a sunny day, a student poured a cup of water on the sidewalk to make a puddle. When he returned later, the puddle was gone. T
    11·1 answer
  • "Conclude how Newton's first, second, and third laws apply to you eating your breakfast." ​
    9·1 answer
  • Will give correct answer brainliest
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!