F = m*a
5000 = 2000 * x
5000/2000 = x
2.5 = x
2.5m/s^2 = a
Answer:


Explanation:
<u><em>Finding the net force:</em></u>
<u><em>Firstly , we'll find force of Friction:</em></u>

Where
is the coefficient of friction and m = 13.6 kg


<u><em>Now, Finding the net force:</em></u>


<u><em>Finding Acceleration:</em></u>



The kinetic energy is 945 joules.
Kinetic energy is the energy that an object has as a result of motion. It is defined as the effort required to accelerate a mass-determined body from rest to the indicated velocity.
The speed of an object or particle, which is a scalar quantity, is the size of the change in its location over time or the size of the change in its position per unit of time.
The mass of the volleyball is 2.1 kg.
The speed of the ball when the ball leaves the hand is 30 m/s.
m = 2.1 kg
v = 30 m/s
The kinetic energy of an object is given as:
KE = (1/2 ) × m × v²
KE = (1 / 2) × 2.1 kg × ( 30 m/s)²
KE = (1 / 2) × 2.1 kg × 30 m/s × 30 m/s
KE = 2.1 kg × 15 m/s × 30 m/s
KE = 945 J
Learn more about kinetic energy here:
brainly.com/question/8101588
#SPJ9
Answer:
A) 350 N
B) 58.33 N
C) 35 kg
D) 35 kg
Explanation:
If we use that g = 10 m/s^2, then the acceleration of gravity on the Moon will be 10/6 m/s^2 = 5/3 m/s*2
The weight of the object on Earth is given by:
Weight = mass * g = 35 * 10 = 350 N
The weight of the object on the Moon:
Weight = mass * gmoon = 35 * 5/3 = 58.33 N
The mass of the object on Earth is 35 kg
The mass of the object on the Moon is exactly the same as on the Earth (35 kg) since the mass is a quantity inherent to the object and not to its location.
Answer:
I'm pretty sure it's the third one where velocity goes from positive to negative
Explanation:
the positive velocity is before the object hits the ground and the negative is after