Answer is: pH value of solution of NaC₂H₃O₂ is 9.07.
Chemical reaction: C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻.
Ka(HC₂H₃O₂) = 1,8·10⁻⁵.<span>
Ka · Kb = Kw.
</span>1,8·10⁻⁵ mol/dm³ · Kb = 1·10⁻¹⁴ mol²/dm⁶; the ionic product of water at 25°C.<span>
Kb(</span>C₂H₃O₂⁻)
= 1·10⁻¹⁴ mol²/dm⁶ ÷ 1,8·10⁻⁵ mol/dm³.<span>
Kb(</span>C₂H₃O₂⁻) =
5,56·10⁻¹⁰ mol/dm³.
c(C₂H₃O₂⁻) = 0,25 M.
[OH⁻] = [HC₂H₃O₂] = x.
[C₂H₃O₂⁻] = 0,25 M - x.
Kb = [OH⁻] · [HC₂H₃O₂] / [C₂H₃O₂⁻].
5,56·10⁻¹⁰ = x² / (0,25 M -x).
Solve quadratic equation: x = [OH⁻] = 0,0000118 M.
pOH = -log[OH⁻] = -log(0,0000118M) = 4,93.
pH + pOH = 14.
pH = 14 - 4,93 = 9,07.
There are essentially 5 states of matter-
1) Solid
2) Liquid
3) Gas
4) Plasma
5) Bose-Einstein Condensate
Plasma comprises of positive and negatively charged particles that are formed in extremely high temperature conditions. A characteristic of plasma is that it is not dense enough. The ions tend to be far apart, which makes them to spread out and imparts compressibility.
Ans B)
The type of the bond is present Na₃PO₄ is the ionic bond. the Na₃PO₄ is the ionic compound. yes the Na₃PO₄ is the polyatomic ion.
The Na₃PO₄ is Na⁺ and PO₄³⁻. the phosphorus is the non metal and the oxygen atom is the non metal. the non meta and non meta form the covalent or molecular bond. the bond between the PO₄³⁻ bond is the covalent bond but the overall present in the Na₃PO₄ is the ionic bond . the bons in between the Na⁺ and PO₄³⁻ is the the ionic bond. the PO₄³⁻ id the polyatomic ion .
The bond between the positively charged ion and the negatively charged ion are called as the ionic bond and the compound form is the ionic compound.
To learn more about ionic bond here
brainly.com/question/29005103
#SPJ4
Atomic number of C is 6. Hence, there are 6 electrons in carbon.
The electronic configuration of carbon is 1s2, 2s2, 2p2
Here, there are 2 unpaired electron. However, C2+ ions have 2 electrons less as compared to C.
Hence, electronic configuration of C 2+ ion is 1s2, 2s2. All the electrons are paired in this system. So there are no unpaired electrons in C 2+ ion.
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution