Answer:
Mole fraction O₂= 0.43
Explanation:
Mole fraction is the moles of gas/ total moles.
Let's determine the moles of each:
Moles O₂ → 15.1 g / 16 g/mol = 0.94
Moles N₂ → 8.19 g / 14 g/mol = 0.013
Moles H₂ → 2.46 / 2 g/mol = 1.23
Total moles = 2.183
Mole fraction O₂= 0.94 / 2.183 → 0.43
Answer:
2,760 grams NaCl
Explanation:
To find grams of NaCl, you need to (1) convert moles of Na to moles of NaCl (via mole-to-mole ratio from reaction) and (2) convert moles of NaCl to grams (via molar mass from periodic table). The final answer should have 3 significant figures based on the given measurement.
2 Na + Cl₂ --> 2 NaCl
Molar Mass (NaCl) = 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl) = 58.44 g/mol
47.2 moles Na 2 moles NaCl 58.44 grams
---------------------- x --------------------------- x ------------------------- =
2 moles Na 1 mole NaCl
= 2,758.368 grams NaCl
= 2,760 grams NaCl
Hello!
When something is a liquid then turns to a gas, this is known as evaporating so we would call it the heat of evaporation or also known as latent heat. Just remember liquid to gas is vapor!
I hope this helped!
I am, yours most sincerely,
SuperHelperThingy
Answer:the pH is 12
Explanation:
First We need to understand the structure of trimethylamine
Due to the grades of the bond in the nitrogen with a hybridization sp3 is 108° approximately, then is generated a dipole magnetic at the upper side of the nitrogen, this dipole magnetic going to attract a hydrogen molecule of the water making the water more alkaline
C3H9N+ H2O --> C3H9NH + OH-
![k=\frac{[C3H9NH]*[OH-]}{[C3H9N]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BC3H9NH%5D%2A%5BOH-%5D%7D%7B%5BC3H9N%5D%7D)
Then:
The concentration of the trimethylamine is 0.3 and the concentration of the ion C3H9NH is equal to the OH- relying on the stoichiometric equation. We could find the concentration of the OH- ion with the square root of the multiplication between k and the concentration of trimethylamine
[OH-]=
[OH-]=0.01
pH=14-(-log[OH-])
pH=12