Answer:
Approximately
, assuming that
.
Explanation:
Let
denote the time required for the package to reach the ground. Let
and
denote the initial and final height of this package.
.
For this package:
- Initial height:
. - Final height:
(the package would be on the ground.)
Solve for
, the time required for the package to reach the ground after being released.
.
.
Assume that the air resistance on this package is negligible. The horizontal ("forward") velocity of this package would be constant (supposedly at
.) From calculations above, the package would travel forward at that speed for about
. That corresponds to approximately:
.
Hence, the package would land approximately
in front of where the plane released the package.
Answer:
E) a billion times brighter
Explanation:
- <u>The sun is a star, which is about billion times brighter as the reflected light from any planet orbiting around it. </u>
- The brightness is based on its composition and its position from the planet. The sun happens to be the brightest star on the Earth's sky which is about 13 billion times brighter than the next brightest star.
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.
A theory can be represented as a model
I believe it’s because of the air from the lower part of the mountain adjusting to the climate at the top. Mountains cause air to rise, and when that air rises it cools down creating the clouds.
Hope I helped!