Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
Explanation:
For example, when a drum is struck, the flexible skin (sometimes called a membrane) of the drum vibrates. The compression and expansion of the air on either side of the vibrating membrane produces differences in air pressure. The pressure differences generate a sound wave that propagates outward from the drum surface.
Friction- the external force that acts on objects and causes them to slow down when no other external force acts upon them.
Answer:
B: False
Explanation:
The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.
Thus, it means that the entropy change will always be positive.
Therefore, the given statement in the question is false.
Answer:
ω = 0.05 rad/s
Explanation:
We consider the centripetal force acting as the weight force on the surface of the cylinder. Therefore,

where,
ω = angular velocity of cylinder = ?
g = required acceleration = 9.8 m/s²
r = radius of cylinder = diameter/2 = 5.9 mi/2 = 2.95 mi = 4023.36 m
Therefore,

<u>ω = 0.05 rad/s</u>