1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lions [1.4K]
3 years ago
6

Why does the cyclist have less kinetic energy at position A than at position B?

Physics
1 answer:
g100num [7]3 years ago
7 0

the answer is A. Their is less friction between the tire and the road at position A than at position B.

You might be interested in
suppose you walk toward the rear of a moving train describe your motion as seen from a reference point on the train then describ
Alja [10]
From the travel car, it would look like you were running. If you were watching from the top of a tree, you would see the train moving.
5 0
3 years ago
A 50 kg bumper car with a 40 kg child and it is at rest when a 60 kg child in her own bumper car slams into it the collision las
IrinaK [193]

Answer:

 F = 99 v₂₀

v₂₀ = 1 m / s,        F = 99 N

Explanation:

In this exercise it is asked to find the force during the collision, for this we use the relationship between the momentum and the momentum of car 1

            I = Δp

            F t = p_f- p₀

            F t = m (v_f -v₀)                        (1)

We must find the final speed of car 1, for this we define a system formed by the two cars, in this case the forces during the collision are internal and the moment is conserved

initial instant. Before the crash

        p₀ = 0 + m₂ v₂₀

         

final instant. After the crash

        p_f = m₁ v₁ + m₂ v_{2f}

the moment is preserved

        p₀ = p_f

        m₂ v₂₀ = m₁ v_{1f} + m₂ v_{2f}           (2)

        m₂ (v₂₀ - v_2f}) = m₁ v_{1f}

as the collision is elastic the kinetic energy is also conserved

        K₀ = K_f

        ½ m₂ v₂₀² = ½ m₁ v_{1f}² + ½ m₂ v_{2f}²

        m₂ (v₂₀² -v_{2f}²) = m₁ v_{1f}²

let's write our system of equations, using

         a² - b² = (a + b) (a-b)

         m₂ (v₂₀ - v_{2f}) = m₁ v_{1f}

         m₂ (v₂₀ -v_{2f}) (v₂₀ + v_{2f}) = m₁ v_{1f}²

to solve we divide the equations

       v₂₀ + v_{2f} = v_{1f}

with this we substitute in equation 2 and find the speed of each car, in this case we need the speed of car 1

         m₂ v₂₀ = m₁ v_{1f} + m₂ (v_{1f}-v₂₀)

         2m₂ v₂₀ = (m₁ + m₂) v_{1f}

          v_{1f} = \frac{2m_2}{m_1+m_2}  v_{2o}

We substitute in the drive ratio of car 1

            F t = m (v_f -v₀)

            F = m₁ (\frac{2m_2}{m_1+m_2}  v_{2o} - 0) / t

            F = \frac{2m_1 m_2 }{m_1+m_2}   \   \frac{v_{2o}}{t}

the mass of each car is the mass of the car plus the mass of the boy

           m₁ = 50 +40 = 90 kg

           m₂ = 50 +60 = 110 kg

     

time is t = 1

         

we substitute the values

           F = \frac{ 2\  90 \ 110}{90+110}  \ \frac{v_{2o}}{1}2 90 100/90 + 110 vo2 / 1

           F = 99 v₂₀

The value of the initial velocity of car 2 is not indicated in the problem, if this velocity is known it can be included and the force value is obtained, suppose that the initial velocity v₂₀ = 1 m / s

           F = 99 N

4 0
3 years ago
Which idea is associated with Copernicus? Select one: a. The orbits of the planets are circles. b. The orbits of the planets are
Schach [20]

Answer:

d. The earth rotates around the sun

Explanation:

  • Nicolas Copernicus is considered the first person to give the theory of heliocentric, or Sun-centered system of our planetary system.
  • In the heliocentric system, it is considered that the sun is stationary and the earth revolves around the sun.
  • He stated that the sun is at the center of the universe and the earth spins on its axis once daily and revolves around the sun in one year.
  • And today we know it is correct that earth rotates on its own axis and also revolves around the sun.

8 0
3 years ago
How fast would you be going (in kmh) if you had a ship that accelerated at a constant 1g for 24 hours?
Nady [450]

Answer:

Explanation:

1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.

9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2

Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations.  We are going to use vf = vi + at.  Everything is just given, or we can assume, so I'll just solve.

vf = vi + at

vf = 0 + 127008 km/hour^2 * 24 hours

vf = 3,048,192 km/hour

If there's anything that doesn't make sense let me know.  

5 0
4 years ago
Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in
Karo-lina-s [1.5K]

Answer:

(a) The self inductance, L = 21.95 mH

(b) The energy stored, E = 4.84 J

(c) the time, t = 0.154 s

Explanation:

(a) Self inductance is calculated as;

L = \frac{N^2 \mu_0 A}{l}

where;

N is the number of turns = 1000 loops

μ is the permeability of free space = 4π x 10⁻⁷ H/m

l is the length of the inductor, = 45 cm = 0.45 m

A is the area of the inductor (given diameter = 10 cm = 0.1 m)

A = \pi r^2 = \frac{\pi d^2}{4} = \frac{\pi \times (0.1)^2}{4} = 0.00786 \ m^2

L = \frac{(1000)^2 \times (4\pi \times 10^{-7}) \times (0.00786)}{0.45} \\\\L = 0.02195 \ H\\\\L = 21.95 \ mH

(b) The energy stored in the inductor when 21 A current ;

E = \frac{1}{2}LI^2\\\\E = \frac{1}{2} \times (0.02195) \times (21) ^2\\\\E = 4.84 \ J

(c) time it can be turned off if the induced emf cannot exceed 3.0 V;

emf = L \frac{\Delta I}{\Delta t} \\\\t = \frac{LI}{emf} \\\\t = \frac{0.02195 \times 21}{3} \\\\t = 0.154 \ s

3 0
3 years ago
Other questions:
  • What is the major difference between static Electricity and current electricity
    13·2 answers
  • In a transverse wave that travels through a medium, the molecules of the medium vibrate
    12·1 answer
  • Newton’s law of cooling states that dx dt = −k(x−A) where x is the temperature,t is time, A is the ambient temperature, and k &g
    10·1 answer
  • A gas is compressed to 75cm3 to a volume of 30cm3. Its temperature remains the same The pressure of the gas after it has been co
    10·1 answer
  • A wave with high amplitude _____.
    11·2 answers
  • A large cube has a mass of 25kg. It is being acclerated
    7·1 answer
  • If an airfoil is inclined at a high incidence angle to the flow, then the boundary layer will tend to separate from the top surf
    5·1 answer
  • Calculate the mechanical advantage of a pulley system if only 10 lb is required to lift a 500 lb block.
    9·1 answer
  • 2 part question
    5·1 answer
  • The teacher measured the maximum height and the minimum height of the plastic duck above the screen as the wave passed. The teac
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!