Answer:
0.35 kg
Explanation:
8 cm = 0.08 m
For the block to stay balance, the buoyancy force must be the same as gravity that pulls it down.
Let mass of the block be M, then the gravity would be Mg
Let water density be
, the buoyancy force would be the weight of water that is displaced by the submerged block.
For example, when there is no coin, block is
submerged. The weight of water displaced must be

Which is also the weight of block, of Mg
Therefore M = 31.2A. (1)
As coins are stacked on top of block, h increase, so as weight of water displaced and total weight of block and coins. Now let m be the total weight of coins. The gravity of block and weight must be (M+m)g. And the weight of water displaced is:


Since the linear plot of h vs m has a slope of 0.089 m/kg, we can interpret it as


So from the eq. (1) we can solve for M = 31.2A = 0.35 kg
Answer:
True
Explanation:
Just as Isaac Newton says, "For every action, there is an equal and opposite reaction."
According to Ohm's Law:

Where: V = Voltage
I = Current
R = Resistance
As you can see here, you can say that Current is directly proportional to Voltage and indirectly proportional to Resistance. This means that as the voltage increases, current increases and as the resistance increases, current decreases.
So in your scenario, if the voltage remains the same, but the resistance is doubled, that means that the current will be halved.
So the answer to your question is 2. the current will drop to half of its original value.
The major winds for the cities that are located at latitudes of 35 degrees north are prevailing winds and westerlies. Prevailing winds are winds that blow in a single direction. Westerlies are prevailing winds that blow towards the west side of the Earth.
funny of u to assume I have friends
If I remember anything from that part of my education (not great at physics) I'd say the answer is A, though I admit i'm not 100% sure
I dunno how to explain, once it hits that's the energy that was converting I guess.