Answer:
1. ( electromagnetic wave)
Answer:
the first one is increase and the second one is cell differentation
Explanation:
Answer:
c. Ductus venosus, vena cava, heart, ductus arteriosus, arteries
Explanation:
The circulatory system consists of the heart and blood vessels. In a fetus, the circulation of blood is different from circulation after delivery largely due to the fact that the lungs are not in use, rather, the fetus obtains oxygen and nutrients from the mother through the placenta and the umbilical cord.
Blood from the placenta is carried to the fetus by the umbilical vein. While some of this blood enters the fetal ductus venosus and is carried to the inferior vena cava, some others enter the liver. The blood from the inferior vena cava then moves into the right atrium of the heart. The foramen ovale, an opening between the right and left atrium in the fetus directs most of the blood flow from the right into the left atrium, thereby, bypassing pulmonary circulation. Most of the blood from the right atrium flows into the left ventricle and is pumped through the aorta to the rest of the body.
Some of the blood from the right atrium however, enters into the right ventricle and is pumped into the pulmonary artery. The ductus arteriosus which is a special connection between the pulmonary artery and the aorta in a fetus, directs most of this blood away from the lungs and into the arteries.
Answer:
Mitosis occurs in somatic cells; this means that it takes place in all types of cells that are not involved in the production of gametes. Prior to each mitotic division, a copy of every chromosome is created; thus, following division, a complete set of chromosomes is found in the nucleus of each new cell. Indeed, apart from random mutations, each successive duplicate cell will have the same genetic composition as its parent, due to the inheritance of the same chromosome set and similar biological environment. This works well for replacing damaged tissue or for growth and expansion from an embryonic state. Because the genes contained in the duplicate chromosomes are transferred to each successive cellular generation, all mitotic progeny are genetically similar. However, there are exceptions. For example, there are genetic variations that arise in clonal species, such as bacteria, due to spontaneous mutations during mitotic division. Furthermore, chromosomes are sometimes replicated multiple times without any accompanying cell division. This occurs in the cells of Drosophila larvae salivary glands, for example, where there is a high metabolic demand. The chromosomes there are called polytene chromosomes, and they are extremely large compared to chromosomes in other Drosophila cells. These chromosomes replicate by undergoing the initial phases of mitosis without any cytokinesis (Figure 2). Therefore, the same cell contains thick arrangements of duplicate chromosomes side by side, which look like strands of very thick rope. Scientists believe that these chromosomes are hyper-replicated to allow for the rapid and copious production of certain proteins that help larval growth and metamorphosis
Explanation:
hope this helped!
Answer:
- Random dispersion occurs with dandelion and other plants that have wind-dispersed seeds that germinate wherever they happen to fall in a favorable environment.
- Clumped dispersion is seen in plants that drop their seeds straight to the ground, such as oak trees, or animals that live in groups, such as schools of fish or herds of elephants.
- Clumped dispersions may also result from habitat heterogeneity. If favorable conditions are localized, organisms will tend to clump around those, such as lions around a watering hole.
hope this helped you (ㆁωㆁ)