The value of the expression 1/√2 + π where the given parameters are π = 3.141 and √2 = 1.414 is 3.848
<h3>How to evaluate the expression?</h3>
The given parameters are
π = 3.141
√2 = 1.414
The expression to evaluate is given as:
1/√2 + π
Start by substituting π = 3.141 and √2 = 1.414 in the expressions 1/√2 + π
1/√2 + π = 1/1.414 + 3.141
Evaluate the quotient
1/√2 + π = 0.707 + 3.141
Evaluate the sum
1/√2 + π = 3.848
Hence, the value of the expression 1/√2 + π where the given parameters are π = 3.141 and √2 = 1.414 is 3.848
Read more about expressions at:
brainly.com/question/723406
#SPJ1
<u>Complete question</u>
By taking π = 3.141 and √2 = 1.414, evaluate 1/√2 + π up to three places of decimals.
Answer:
6 quarters, 4 dimes, and 2 nickels
Answer:

Step-by-step explanation:
![\frac{x+2}{4x^2 + 5x + 1} \ \times \ \frac{4x+1}{x^2-4}\\\\=\frac{x+2}{4x^2 + 4x + x + 1} \ \times \ \frac{4x+1}{x^2-2^2}\\\\=\frac{x+2}{4x(x + 1) + 1( x + 1)} \ \times \ \frac{4x+1}{(x - 2)(x + 2)} \ \ \ \ \ \ \ \ [ \ (a^2 - b^2 = (a-b)(a+b) \ ]\\\\\\=\frac{x+2}{(4x + 1)(x+1)} \ \times \ \frac{4x+1}{(x-2)(x+2)}\\\\=\frac{1}{(x+1)} \ \times \ \frac{1}{(x-2)}\\\\= \frac{1}{(x+1)(x-2)}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%2B2%7D%7B4x%5E2%20%2B%205x%20%2B%201%7D%20%5C%20%5Ctimes%20%5C%20%5Cfrac%7B4x%2B1%7D%7Bx%5E2-4%7D%5C%5C%5C%5C%3D%5Cfrac%7Bx%2B2%7D%7B4x%5E2%20%2B%204x%20%20%2B%20x%20%2B%201%7D%20%5C%20%5Ctimes%20%5C%20%5Cfrac%7B4x%2B1%7D%7Bx%5E2-2%5E2%7D%5C%5C%5C%5C%3D%5Cfrac%7Bx%2B2%7D%7B4x%28x%20%2B%201%29%20%20%2B%201%28%20x%20%2B%201%29%7D%20%5C%20%5Ctimes%20%5C%20%5Cfrac%7B4x%2B1%7D%7B%28x%20-%202%29%28x%20%2B%202%29%7D%20%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5B%20%5C%20%28a%5E2%20-%20b%5E2%20%3D%20%28a-b%29%28a%2Bb%29%20%5C%20%5D%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7Bx%2B2%7D%7B%284x%20%2B%201%29%28x%2B1%29%7D%20%5C%20%5Ctimes%20%5C%20%5Cfrac%7B4x%2B1%7D%7B%28x-2%29%28x%2B2%29%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B%28x%2B1%29%7D%20%5C%20%5Ctimes%20%5C%20%5Cfrac%7B1%7D%7B%28x-2%29%7D%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B%28x%2B1%29%28x-2%29%7D)
Answer:
Option (4)
Step-by-step explanation:
Domain:
Domain of function is defined by the x-values (Input values) on the graph.
Range:
Range of a function is defined by the y-values (output values) on the graph.
From the graph attached,
x-values are starting from (-3) to infinity.
Therefore, domain of the function will be all real numbers greater than equal to (-3).
Option (4) will be the answer.