Answer:
1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo
Explanation:
The given parameters are;
The mass of Christian and his bicycle = 54 kg
The mass of the cargo = 12 kg
1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity
∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo.
Answer:
The slope of a graph of position vs time
Answer:
elliptical orbit
Explanation:
There are three laws of planetary motion, which are called Kepler's law of planetary motion.
First Law : It states that all the planets revolve around the sun in an elliptical path and the sun is at one focus of that elliptical path.
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56