The tension in the first and second rope are; 147 Newton and 98 Newton respectively.
Given the data in the question
- Mass of first block;

- Mass of second block,

- Tension on first rope;

- Tension on second rope;
To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity
)
For the First Rope
Total mass hanging on it; 
So Tension of the rope;

Therefore, the tension in the first rope is 147 Newton
For the Second Rope
Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

Therefore, the tension in the second rope is 98 Newton
Learn More, brainly.com/question/18288215
Given: Wavelength λ = 410 nm convert to Meters m = 4.10 x 10⁻⁷ m
Speed of light c = 3 x 10⁸ m/s
Required: Frequency f = ?
Formula: c = λf
f = c/λ
f = 3 x 10⁸ m/s/4.10 x 10⁻⁷ m
f = 7.32 x 10¹⁴/s or 732 Thz (Terahertz)
In mathematics, a percentage is a number or ratio expressed as a fraction of 100.
Answer:
0.1 m
Explanation:
F = Force exerted on spring = 3 N
k = Spring constant = 60 N/m
x = Displacement of the block
As the energy of the system is conserved we have




The position of the block is 0.1 from the initial position.