The answer is C voltmeter
Answer:
B) changing position
Explanation:
When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, due to multiple bounce the position of the ball changes.
Thus, When bouncing a ball, the bouncing motion results in the ball changing position.
Answer:
Acceleration = 0.5 m/s²
Explanation:
Given the following data;
Initial velocity, u = 1m/s
Final velocity, v = 3m/s
Time, t = 4 seconds
To find acceleration;
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.
Mathematically, acceleration is given by the equation;


Substituting into the equation, we have;
Acceleration = (3 - 1)/4
Acceleration = 2/4
Acceleration = 0.5 m/s²
Answer:
Explanation:
Given that,
Hot temperature
T_H = 96°F
From Fahrenheit to kelvin
°K = (°F - 32) × 5/9 + 273
°K = (96 - 32) × 5/9 + 273
K = 64 × 5/9 + 273 = 35.56 + 273
K = 308.56 K
T_H = 308.56 K
Low temperature
T_L = 70°F
Same procedure to Levine
T_L = (70-32) × 5/9 + 273
T_L = 294.11 K
A carnot refrigerator working between a hot reservoir and at temperature T_H and a cold reservoir and at temperature T_L has a coefficient of performance K given by
K = T_L / (T_H - T_L)
K = 294.11 / (308.56 - 294.11)
K = 294.11 / 14.45
K = 20.36
Then, the coefficient of performance is the energy Q_L drawn from the cold reservoir as heat divided by work done,
So, for each joules W = 1J
K = Q_L / W
Then,
Q_L = K•W
Q_L = 20.36 × 1
Q_L = 20.36 J
Q_L ≈ 20J
So, approximately 20J of heats are removed from the room