Answer:
a. ![-12.7 Nm](https://tex.z-dn.net/?f=-12.7%20Nm)
b. ![-7.9 rad/s^2](https://tex.z-dn.net/?f=-7.9%20rad%2Fs%5E2)
Explanation:
I have attached an illustration of a solid disk with the respective forces applied, as stated in this question.
Forces applied to the solid disk include:
![F_1 = 90.0N\\F_2 = 125N](https://tex.z-dn.net/?f=F_1%20%3D%2090.0N%5C%5CF_2%20%3D%20125N)
Other parameters given include:
Mass of solid disk, ![M = 24.3kg](https://tex.z-dn.net/?f=M%20%3D%2024.3kg)
and radius of solid disk, ![r = 0.364m](https://tex.z-dn.net/?f=r%20%3D%200.364m)
a.) The formula for determining torque (
), is ![T = r * F](https://tex.z-dn.net/?f=T%20%3D%20r%20%2A%20F)
Hence the net torque produced by the two forces is given as a summation of both forces:
![T = T_{125} + T_{90}\\= -r(125)sin90 + r(90)sin90\\= 0.364(-125 + 90)\\= -12.7 Nm](https://tex.z-dn.net/?f=T%20%3D%20T_%7B125%7D%20%2B%20T_%7B90%7D%5C%5C%3D%20-r%28125%29sin90%20%2B%20r%2890%29sin90%5C%5C%3D%200.364%28-125%20%2B%2090%29%5C%5C%3D%20-12.7%20Nm)
b.) The angular acceleration of the disk can be found thus:
using the formula for the Moment of Inertia of a solid disk;
![I_{disk} = {\frac{1}{2}}Mr^2](https://tex.z-dn.net/?f=I_%7Bdisk%7D%20%3D%20%7B%5Cfrac%7B1%7D%7B2%7D%7DMr%5E2)
where
= Mass of solid disk
and
= radius of solid disk
We then relate the torque and angular acceleration (
) with the formula:
![T = I\alpha \\-12.7 = ({\frac{1}{2}}Mr^2)\alpha \\\alpha = -{\frac{12.7}{1.61}} = -7.9 rad/s^2](https://tex.z-dn.net/?f=T%20%3D%20I%5Calpha%20%5C%5C-12.7%20%3D%20%28%7B%5Cfrac%7B1%7D%7B2%7D%7DMr%5E2%29%5Calpha%20%5C%5C%5Calpha%20%20%3D%20-%7B%5Cfrac%7B12.7%7D%7B1.61%7D%7D%20%3D%20-7.9%20rad%2Fs%5E2)