Answer:
The final speed of the crate is 12.07 m/s.
Explanation:
For the first 10.0 meters, the only force acting on the crate is 225 N, so we can calculate the acceleration as follows:


Now, we can calculate the final speed of the crate at the end of 10.0 m:
For the next 10.5 meters we have frictional force:


So, the acceleration is:
The final speed of the crate at the end of 10.0 m will be the initial speed of the following 10.5 meters, so:
Therefore, the final speed of the crate after being pulled these 20.5 meters is 12.07 m/s.
I hope it helps you!
Answer:
The component form will be;
In the x-axis = 121.73 due west
In the y-axis = 690.35 due south
Explanation:
An image of the calculation has been attached
Well, I guess you can come close, but you can't tell exactly.
It must be presumed that the seagull was flying through the air
when it "let fly" so to speak, so the jettisoned load of ballast
of which the bird unburdened itself had some initial horizontal
velocity.
That impact velocity of 98.5 m/s is actually the resultant of
the horizontal component ... unchanged since the package
was dispatched ... and the vertical component, which grew
all the way down in accordance with the behavior of gravity.
98.5 m/s = √ [ (horizontal component)² + (vertical component)² ].
The vertical component is easy; that's (9.8 m/s²) x (drop time).
Since we're looking for the altitude of launch, we can use the
formula for 'free-fall distance' as a function of acceleration and
time:
Height = (1/2) (acceleration) (time²) .
If the impact velocity were comprised solely of its vertical
component, then the solution to the problem would be a
piece-o-cake.
Time = (98.5 m/s) / (9.81 m/s²) = 10.04 seconds
whence
Height = (1/2) (9.81) (10.04)²
= (4.905 m/s²) x (100.8 sec²) = 494.43 meters.
As noted, this solution applies only if the gull were hovering with
no horizontal velocity, taking careful aim, and with malice in its
primitive brain, launching a remote attack on the rich American.
If the gull was flying at the time ... a reasonable assumption ... then
some part of the impact velocity was a horizontal component. That
implies that the vertical component is something less than 98.5 m/s,
and that the attack was launched from an altitude less than 494 m.
Answer:
Explanation:
1.)acceleration= final velocity-initial velocity/time
90m/s-0m/s /3seconds
=30m/s^2
2.) distance= speed*time
90m/s*3seconds
=270m
Answer:
The net charge on the shell is 30x10^-9C
Explanation:
Pls see attached file