Answer:
Force
If you're taking classical physics, simply stated, a force is a push or a pull of some sort. But there is one other very important thing to understand about Force. A true Force is always an interaction (at least from a classical perspective). That means that forces always come in pairs. This is stated in Newton's Third Law (equal and opposite forces). Every action must have a reaction. This is required for all true forces. Another consequence of this is that force is a vector, meaning it has a magnitude and a direction. The action and reaction will always be opposite in direction.
A lot of people will say F=ma. This is true. However, it is important to keep in mind that this definition is a calculational tool. It is more precise to say the Sum of all forces=ma. The point is that ma is not a force. Forces are things like weight, tension, normal, friction, gravity, electrostatic, magnetic, and various other applied forces. The sum of forces on an object equals the product of its mass times its acceleration.
It is important to keep in mind that the force is on the object that accelerates. Another way to state this is that objects cannot accelerate themselves. You cannot push yourself back (or forwards). But if you push a heavy object like a desk forwards, then the desk can push you back.
Energy
There are many kinds of energy. There are two important things to know.
Energy is the ability to do work. It doesn't mean work is being done, but that work can be done. (So you can see there is an intimate relationship between work and energy).
Energy is conserved. That means the total amount of energy is always constant. If the energy is a system changes somehow, that means some work was done in order to move the energy from one system to another.
Energy is also a scalar (given that Work is a scalar).
Magnetometers<span> are widely used for measuring the Earth's magnetic field and in geophysical surveys to detect magnetic anomalies of various types. </span>They<span> are also used in the military to detect submarines.</span>
Answer:
Explanation below:
Explanation:
Annual motion describes the changes in motion of the earth around the sun. Diurnal motion can be better understood as the change in motion caused by Earths rotation at the poles.
This might not be the answer you were looking for, your question is very vague.
Answer: B. 44.64 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Mass of reactants = mass of iron + mass of oxygen = mass of iron + 34.7 g
Mass of product = mass of iron oxide = 79.34 g
As Mass of reactants = Mass of product
mass of iron + 34.7 g = 79.34 g
mass of iron = 44.64 g
Thus 44.64 g of iron was used in the reaction
Answer:
3. 5.0N/kg
Explanation:
Gravitational field strength = gravitational force/mass of astronaut = 350N/70kg = 5.0N/kg