As the plane falls the parabolic path remains directly below as the plane continues to fly over. This give more of an overview. When the package falls vertical acceleration happens as there is a vertical velocity as the package falls form high above. The downwards motion of gravity acts on the package if the approximated projectile motion ignoring air resistance.
<span>LOCATION Z, because it is only 2 away from the coast.
The rest are farther inland
hope this helps</span>
Answer:
The nest must be about 4.15 meters above ground
Explanation:
Use the velocity equation under accelerated motion (acceleration of gravity ):

which for this case has initial velocity = 0 (falls from the nest), final velocity = 9 m/s, and a = 9.8 m/s^2, then we can find the time needed in air while falling to reach the required speed:

We now use this time value to find the distance covered in free fall during 0.92 seconds:

Answer:
3.4 x 10⁴ m/s
Explanation:
Consider the circular motion of the electron
B = magnetic field = 80 x 10⁻⁶ T
m = mass of electron = 9.1 x 10⁻³¹ kg
v = radial speed
r = radius of circular path = 2 mm = 0.002 m
q = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
For the circular motion of electron
qBr = mv
(1.6 x 10⁻¹⁹) (80 x 10⁻⁶) (0.002) = (9.1 x 10⁻³¹) v
v = 2.8 x 10⁴ m/s
Consider the linear motion of the electron :
v' = linear speed
x = horizontal distance traveled = 9 mm = 0.009 m
t = time taken =
=
= 4.5 x 10⁻⁷ sec
using the equation
x = v' t
0.009 = v' (4.5 x 10⁻⁷)
v' = 20000 m/s
v' = 2 x 10⁴ m/s
Speed is given as
V = sqrt(v² + v'²)
V = sqrt((2.8 x 10⁴)² + (2 x 10⁴)²)
v = 3.4 x 10⁴ m/s