Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Answer:
A. 2.82 eV
B. 439nm
C. 59.5 angstroms
Explanation:
A. To calculate the energy of the photon emitted you use the following formula:
(1)
n1: final state = 5
n2: initial state = 2
Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

B. The energy of the emitted photon is given by the following formula:
(2)
h: Planck's constant = 6.62*10^{-34} kgm^2/s
c: speed of light = 3*10^8 m/s
λ: wavelength of the photon
You first convert the energy from eV to J:

Next, you use the equation (2) and solve for λ:

C. The radius of the orbit is given by:
(3)
where ao is the Bohr's radius = 2.380 Angstroms
You use the equation (3) with n=5:

hence, the radius of the atom in its 5-th state is 59.5 anstrongs
Answer:
a.14 s
b.70 s
Explanation:
a.Let the sidewalk moving in positive x- direction.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=1.5m/s
The speed of women relative to the ground

Distance=35 m
Time=
Using the formula
Time taken by women to reach the opposite end if she walks in the same direction the sidewalk is moving=
b.If she gets on at the end opposite the end in part (a)
Then, we take displacement negative.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=-1.5 m/s
The speed of women relative to the ground=
Time=
Hence, the women takes 70 s to reach the opposite end if she walks in the opposite direction the sidewalk is moving.