the perpendicular component will be = Wy
Wy = w * cos 42.34 = 48.11 N x cos 42.34 = 35.54 N
Well, first of all, a car moving around a circular curve is not moving
with uniform velocity. The direction of motion is part of velocity, and
the direction is constantly changing on a curve.
The centripetal force that keeps an object moving in a circle is
Force = (mass of the object) · (speed)² / (radius of the circle)
F = m s² / r
We want to know the radius, to rearrange the formula to give us
the radius as a function of everything else.
F = m s² / r
Multiply each side by 'r': F· r = m · s²
Divide each side by 'F': r = m · s² / F
We know all the numbers on the right side,
so we can pluggum in:
r = m · s² / F
r = (1200 kg) · (20 m/s)² / (6000 N) .
I'm pretty sure you can finish it up from here.
Atoms are the smallest unit of an element
Answer:
Gravitational force
Explanation:
Gravitational force is obviously one of the biggest obstacles in climbing. You are essentially going against this very strong force to pull your body mass up the beautiful terrain. Gravity is defined as the force of attraction between all masses in the universe, gravity is what allows the sport of climbing.
Answer:
31,360J
Explanation:
Gravitation potential energy (gpe) is calculated from the formula mgh.
That implies, gpe = mgh
Therefore substituting the values of m and h as given in the question, knowing in mine that the acceleration due to gravity( g) is 9.8 N/kg, will give 31,360J
Never forget to put your SI units, because even if your answer is numerical correct, it will be incorrect because it represents no physical quantity.