When an object does not move even on pushing , static frictional force acts on in opposite direction of the applied force to stop the object from moving. static frictional force is a self adjusting force and it adjust its value according to the applied force if the applied force is smaller than the maximum value of static frictional force. The object starts moving once the applied force on it becomes greater than the maximum static frictional force. hence the statement is true.
Answer:
I think it is difficult to determine what has caused climate change in the distant past because it must have been a long time ago so geologists can't carry out different experiments and figure out what gases the planet had conjured, so geologists can only make predictions based off the evidence they currently have from what the planet looked like before. The planet must have changed over the years, therefore the climate has also changed in the future, so they cannot work with how the planet looked in the past.
Answer : Capacitors
Explanation : Capacitors are normally placed on transmission or distribution lines when to reduce inductive reactance.
This is because it enhances electromechanical and voltage stability , limit voltage dips at network nodes and reduces the power loss.
So, we can say that inductive reactance normally replace by the capacitors.
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965