<h2>Answer 1
</h2>
∠mB  = 39°
BA=  14.30 inches.
CA= 11.1126 inches.  
<u>Step by step explanation:  </u>
Given one angle and one side:  
 ∠A= 51°
 ∠mB= ?
As, it is a right angled triangle therefore,  ∠C= 90
Also, sum of measure of triangle is 180:
 ∠mA +  ∠mB +  ∠mC = 180°
51° +  ∠mB + 90° = 180°
 ∠mB = 180° - 90° - 51°  
 ∠mB  = 39° (Answer)
Now to calculate the required sides:  
Given, BC= 9 inch (perpendicular)  
BA= ? (hypotenuse) & CA= ? (base)  
To find BA=  
Since, perpendicular is given and we have to find hypotenuse. We will put the formula:
Sin ∠mB = Perp/ Hyp
Sin 39° = 9/ BA  
BA= 9/ 0.629
BA=  14.30 inches.
For side CA, we will use Pythagorean Theorem:
Hyp2 = Perp2 + Base2
BA2 = BC2 + CA2
(14.30)2 = 92 + CA2
204.49 = 81 + CA2
CA2 = 123.49  
Taking square root on both sides: weget,  
 CA= 11.1126 inches.  
<h2>Answer 2
</h2>
∠mA = 37°
BC = 3.993 m.
CA = 3 m.
<u>Step by step explanation:</u>
Given one angle and one side:  
 ∠mB = 53°
 ∠mA= ?
As, it is a right angled triangle therefore,  ∠C= 90°
Also, sum of measure of triangle is 180:
 ∠mA +  ∠mB +  ∠mC = 180°
∠mA + 53° + 90° = 180°
∠mA = 180° - 143°
∠mA = 37°
Now to calculate the required sides:  
Given, CB= ?(perpendicular)  
BA= 5 m  (hypotenuse) & CA= ? (base)  
To find CB=  
Since, hypotenuse is given and we have to find perpendicular. We will put the formula:
Sin ∠mA = Perp/ Hyp
Sin 37 = CB/ 5  
0.601 = CB / 5  
0.601 x 5 = CB
CB = 3.009 m.
For side CA, we will use Pythagorean Theorem:
Hyp2 = Perp2 + Base2
BA2 = CB2 + CA2
52 - 3.0092 = CA
15.94 = CA2
Taking square root on both sides:  we get,
CA = 3.99 m.  
<h2>Answer 3</h2>
m∠B = 62°  
AB= 62.41 ml
CB= 55.10 ml.
<u>Step by step explanation</u>
Given one angle and one side,
 ∠mA= 28°  
 ∠mB= ?
As, it is a right angled triangle therefore,  ∠C= 90°
Also, sum of measure of triangle is 180:
 ∠mA +  ∠mB +  ∠mC = 180°
28° + m∠B + 90° = 180°
118° + m∠B = 180°  
m∠B = 180° - 118°  
m∠B = 62°  
Now to calculate the required sides:  
Given, CA= 29.3 ml (perpendicular)  
AB= ?  (hypotenuse) & CB= ? (base)
To findAB=  
Since, perpendicular is given and we have to find hypotenuse. We will put the formula:
Sin ∠mA = Perp/ Hyp
Sin 28° = 29.3 / AB
0.469 = 29.3 / AB
AB = 29.3 / 0.469
AB= 62.41 ml
For side CA, we will use Pythagorean Theorem:
Hyp2 = Perp2 + Base2
AB2 = CA2 + CB2
62.41 = 29.3 + CB2
CB2 = 3036.59
Taking square root on both sides:  
CB= 55.10 ml.
<h2>Answer 4</h2>
m∠B= 66°
AC= 5.694 m
CB = 12.78m.  
<u>Step by step explanation:
</u>
Given one angle and one side,
 ∠mA= 24°
 ∠mB= ?
As, it is a right angled triangle therefore,  ∠C= 90°
Also, sum of measure of triangle is 180:
 ∠mA +  ∠mB +  ∠mC = 180°
24° + m∠B + 90° = 180°  
114° + m∠B = 180°  
m∠B = 180° - 114°
m∠B= 66°  
Now to calculate the required sides:  
Given, AB=14 m (hypotenuse)  
AC= ? (perpendicular) & CB= ? (base)
To find AC =  
Since, hypotenuse is given and we have to find perpendicular. We will put the formula:
Sin ∠mA = Perp/ Hyp
Sin 24° = AC/ 14
0.406 = AC / 14
AC= 5.694 m  
For side CB, we will use Pythagorean Theorem:
Hyp2 = Perp2 + Base2
AB2 = AC2 + CB2
14 = 5.694 + CB2  
CB2 = 163.574
Taking square root on both side:
CB = 12.78m.