Answer:
F = 1263.03 N
Explanation:s
given,
mass of the disk thrower = 100 Kg
mass of the disk = 2 Kg
angular speed of the disk = 4 rev/s
arm outstretched = 1 m
centripetal force of the disk in the circular path
F = m ω² r
ω = 4 x 2 x π
ω = 25.13 rad/s
F = m ω² r
F = 2 x 25.13² x 1
F = 1263.03 N
hence, centripetal force equal to the F = 1263.03 N
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
1.72 x 10³ N.
Explanation:
When a charge is split equally and placed at a certain distance , maximum electrostatic force is possible.
So the charges will be each equal to
31/2 = 15.5 x 10⁻⁶ C
F = K Q q / r²
= 
= 1.72 x 10³ N.