Answer:
See the explanation below.
Explanation:
A lever is a simple machine that changes the magnitude and direction of the force applied to move an object. Minimizes the force needed to lift the object.
By means of the following image, we can see the principle of operation of a lever.
The load can be moved thanks to the force multiplied by the distance to the fulcrum.
Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i) 
The equation for velocity v and a constant acceleration a is:
(ii) 
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii) 
(iv) 
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v) 
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

Answer:

Explanation:
From the question we are told that:
Height 
Radius 
Height of water 
Gravity 
Density of water 
Generally the equation for Volume of water is mathematically given by


Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by

Substituting dv


Therefore




![W=3420.84*0.25[2401-65536]](https://tex.z-dn.net/?f=W%3D3420.84%2A0.25%5B2401-65536%5D)


'
'
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Acid it is i believe........