<span>A design is remodeled after analysis and tested again.</span>
Answer:
Gauge Pressure required = 606.258 kPa
Explanation:
Water will not enter the chamber if the pressure of air in it equals that of the water which tries to enter it.
Thus at a depth of 60m we have pressure of water equals

Now the gauge pressure is given by

Applying values we get

Speed = (distance) / (time)
Speed = (
Velocity = speed, and its direction
The velocity of the plane is 10.2 miles per second East.
(about 48 times the speed of sound)
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]
Answer:
10miles/second
Explanation:
Change in velocity of the bird is expressed as the difference between the final velocity and initial velocity of the body.
Change in velocity = Final velocity - initial velocity
Since the bird takes off from the tree, the initial velocity of the bird = 0miles/sec
Final velocity = 10miles/secs
Change in velocity = 10-0
Change in velocity = 10miles/second