Speed, frequency and wavelength are interconnected to each other.
<h3>What happens to the wavelength if the frequency increases?</h3>
As a wavelength increases in size, its frequency and energy (E) decrease. As the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer.
The wave speed is equal to the product of its frequency and wavelength, which shows the relationship between frequency and wavelength.
So we can conclude that speed, frequency and wavelength are interconnected to each other.
Learn more about frequency here: brainly.com/question/254161
Answer:
1 m = 39.37 in = 39.37/12 ft = 3.28 ft
V = 1145 k/hr = 1145k/hr * 6076 ft/k = 6957020 ft / hr
V = 6957020 ft/hr / 3600 s/hr = 1933 ft/sec
V = 1933 ft/sec / (3.28 ft / m) = 589 m/s
Check:
88 ft/sec = 60 mph
(1145 k/hr * 6076 ft / k) 3600 sec/hr = 1933 ft/sec = 589 m/s
1933 ft/sec / (88 ft/sec) * 60 mph = 1318 mph
Also, 1318 / 1145 = 6076 / 5280 as it should
football hemets have pads that are filled with air and thick foam so when they are hit the foam asorbs the hit and the air keeps the hard outer shell of the helmet from hiting the players head
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
Answer:
Explanation:
A Spring stretches / compresses when force is applied on them and they are governed by the Hookes Law which states that the force required to stretch or compress a spring is directly proportional to the distance it is stretched.

F is the force applied and x is the elongation of the spring
k is the spring constant.
negative sign indicates the change in direction from equilibrium position.
In the given question, we dont have force but we know that the pan is hanging. We also know from the Newton's second law of motion that

Inserting this into Hooke's Law

computing it for x,

This is the model which will tell the length of the spring against change in the mass located in the pan.