Answer:
There is a thing called a continental drift. It started about 200 million years ago. At first the continents were all attached, this super continent was called pangaea. Continental drift occurs because of the shift of the tectonic plates within the earth's outer shell. The heat from within the earth triggers movement to occur. This a very slow process though. It took 200 million years for the continents to get where the are now and would probably take another 200 to collide.
Answer:
The property of the wave marked X is related to the source of the wave
Explanation:
The source of of origin of waves
Electromagnetic wave are waves that consists of varying electric and magnetic field that vibrate perpendicular to each other and to the direction of propagation of the wave and they are therefore transverse waves and transfer energy
Electromagnetic waves originate from the vibration of charged particles that gives off varying electric and magnetic fields
Mechanical waves are defined as waves that require a material medium such as air, water, metal, plastic, stretched leather, or wood to propagate
Mechanical waves originate from vibration of the particles of a medium
Sound waves which is a form of longitudinal mechanical waves that propagates by the vibration of the particles of a given medium about a point parallel to the direction of propagation of the wave.
You can use the equation V=Vo+at since the acceleration is constant. Plugging in the values you know, you will get an answer of 3.75 seconds
Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y
Explanation:
According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
(1)
Where;
is the Gravitational Constant
is the mass of the Earth
is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
So for satellite X, the orbital period
is:
(2)
Where 
(3)
(4)
For satellite Y, the orbital period
is:
(5)
Where 
(6)
(7)
This means 
Now let's calculate the tangential speed for both satellites:
<u>For Satellite X:</u>
(8)
(9)
<u>For Satellite Y:</u>
(10)
(11)
This means 
Therefore:
Satellite X has a greater period and a slower tangential speed than Satellite Y